L(s) = 1 | + (−0.840 + 1.51i)3-s − 2.34i·5-s + (−2.61 + 0.373i)7-s + (−1.58 − 2.54i)9-s + 0.442i·11-s + (−1.96 − 1.13i)13-s + (3.55 + 1.97i)15-s + (4.01 + 2.32i)17-s + (3.30 + 5.73i)19-s + (1.63 − 4.28i)21-s − 1.13i·23-s − 0.514·25-s + (5.18 − 0.267i)27-s + (4.37 + 7.58i)29-s + (2.32 + 4.01i)31-s + ⋯ |
L(s) = 1 | + (−0.485 + 0.874i)3-s − 1.05i·5-s + (−0.989 + 0.141i)7-s + (−0.529 − 0.848i)9-s + 0.133i·11-s + (−0.543 − 0.314i)13-s + (0.918 + 0.509i)15-s + (0.974 + 0.562i)17-s + (0.759 + 1.31i)19-s + (0.356 − 0.934i)21-s − 0.236i·23-s − 0.102·25-s + (0.998 − 0.0515i)27-s + (0.812 + 1.40i)29-s + (0.416 + 0.721i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.539 - 0.842i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.539 - 0.842i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.059605991\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.059605991\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.840 - 1.51i)T \) |
| 7 | \( 1 + (2.61 - 0.373i)T \) |
good | 5 | \( 1 + 2.34iT - 5T^{2} \) |
| 11 | \( 1 - 0.442iT - 11T^{2} \) |
| 13 | \( 1 + (1.96 + 1.13i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-4.01 - 2.32i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.30 - 5.73i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 1.13iT - 23T^{2} \) |
| 29 | \( 1 + (-4.37 - 7.58i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.32 - 4.01i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.41 + 2.44i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.55 - 2.62i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.81 + 2.20i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.67 + 4.63i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1.54 - 2.67i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.689 - 1.19i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (8.88 + 5.13i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.10 - 1.21i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 7.20iT - 71T^{2} \) |
| 73 | \( 1 + (-3.17 - 1.83i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (7.26 + 4.19i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-7.87 - 13.6i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-5.32 + 3.07i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-14.9 + 8.63i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.16743832189970469008415395808, −9.322536544312684530597437133056, −8.716547041467166482699208597537, −7.68818312224068467998577303557, −6.47704395867995907647260299493, −5.58496058426800308052472513778, −5.01034573041254495389832889882, −3.89720351511383654010370303488, −3.04439532759353420619066088334, −1.03823435579327293451711499863,
0.65573116613501502984961093132, 2.52860003990401554160649922693, 3.11436694928229524215840010483, 4.65990926107373046182915658536, 5.85838721062621347550682841817, 6.49028044812139224939733059793, 7.27769042322037276137961023832, 7.72950039569597248098616488906, 9.152795768441566462181126098031, 9.911911866889460086862166787827