L(s) = 1 | + (−1.13 − 1.30i)3-s + 0.618i·5-s + (−1.03 + 2.43i)7-s + (−0.413 + 2.97i)9-s − 2.97i·11-s + (−1.64 − 0.951i)13-s + (0.808 − 0.703i)15-s + (2.92 + 1.68i)17-s + (−1.13 − 1.96i)19-s + (4.35 − 1.41i)21-s − 6.74i·23-s + 4.61·25-s + (4.35 − 2.83i)27-s + (−1.74 − 3.02i)29-s + (−3.67 − 6.36i)31-s + ⋯ |
L(s) = 1 | + (−0.656 − 0.754i)3-s + 0.276i·5-s + (−0.391 + 0.920i)7-s + (−0.137 + 0.990i)9-s − 0.898i·11-s + (−0.457 − 0.263i)13-s + (0.208 − 0.181i)15-s + (0.708 + 0.409i)17-s + (−0.260 − 0.450i)19-s + (0.951 − 0.308i)21-s − 1.40i·23-s + 0.923·25-s + (0.837 − 0.546i)27-s + (−0.324 − 0.562i)29-s + (−0.660 − 1.14i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.237 + 0.971i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.237 + 0.971i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8516370963\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8516370963\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.13 + 1.30i)T \) |
| 7 | \( 1 + (1.03 - 2.43i)T \) |
good | 5 | \( 1 - 0.618iT - 5T^{2} \) |
| 11 | \( 1 + 2.97iT - 11T^{2} \) |
| 13 | \( 1 + (1.64 + 0.951i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.92 - 1.68i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.13 + 1.96i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 6.74iT - 23T^{2} \) |
| 29 | \( 1 + (1.74 + 3.02i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (3.67 + 6.36i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (3.25 + 5.63i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-9.09 - 5.25i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.48 + 1.43i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (2.80 - 4.85i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.50 + 4.34i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (2.17 + 3.76i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.14 + 1.81i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.34 + 2.50i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 6.18iT - 71T^{2} \) |
| 73 | \( 1 + (12.5 + 7.23i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (10.4 + 6.03i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.48 - 9.49i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (6.03 - 3.48i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-2.71 + 1.56i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.760980357359612092834956600834, −8.779865211101115488692122658285, −8.016060105462993829672844857519, −7.12145814666132592164132892046, −6.11102966274590235527639514067, −5.77309476231535146334298928243, −4.62273851694648273997721193552, −3.08674831167058827155661271105, −2.19132778657272623973792706824, −0.45989482111831130252755367335,
1.28425876749259158749987965957, 3.18990629842939881525548400434, 4.11267972721731013221700053053, 4.94225173558519656638907289452, 5.73975034031262058799472698043, 6.98172482152686333679316070612, 7.38814156177014925003993075122, 8.816328994828496896796097416919, 9.584245439510274401065406833061, 10.17839772119571646245435684764