L(s) = 1 | + (−1.33 + 1.10i)3-s + 1.09i·5-s + (1.10 + 2.40i)7-s + (0.576 − 2.94i)9-s + 0.100i·11-s + (4.27 + 2.46i)13-s + (−1.20 − 1.46i)15-s + (3.23 + 1.86i)17-s + (−2.54 − 4.41i)19-s + (−4.12 − 2.00i)21-s + 9.20i·23-s + 3.79·25-s + (2.46 + 4.57i)27-s + (−3.96 − 6.86i)29-s + (2.41 + 4.18i)31-s + ⋯ |
L(s) = 1 | + (−0.772 + 0.635i)3-s + 0.490i·5-s + (0.416 + 0.908i)7-s + (0.192 − 0.981i)9-s + 0.0303i·11-s + (1.18 + 0.683i)13-s + (−0.311 − 0.378i)15-s + (0.784 + 0.453i)17-s + (−0.584 − 1.01i)19-s + (−0.899 − 0.436i)21-s + 1.91i·23-s + 0.759·25-s + (0.475 + 0.879i)27-s + (−0.735 − 1.27i)29-s + (0.434 + 0.752i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.512 - 0.858i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.512 - 0.858i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.207553699\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.207553699\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.33 - 1.10i)T \) |
| 7 | \( 1 + (-1.10 - 2.40i)T \) |
good | 5 | \( 1 - 1.09iT - 5T^{2} \) |
| 11 | \( 1 - 0.100iT - 11T^{2} \) |
| 13 | \( 1 + (-4.27 - 2.46i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.23 - 1.86i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.54 + 4.41i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 9.20iT - 23T^{2} \) |
| 29 | \( 1 + (3.96 + 6.86i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.41 - 4.18i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.77 + 4.80i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (3.91 + 2.25i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.73 - 1.00i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (3.17 - 5.49i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (6.53 - 11.3i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.44 + 2.50i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-8.21 - 4.74i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (10.8 - 6.28i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 14.5iT - 71T^{2} \) |
| 73 | \( 1 + (-5.92 - 3.41i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.31 - 1.33i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.112 + 0.195i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (4.90 - 2.83i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.47 + 3.73i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39051833912586436012513685955, −9.343671551015344738450782293070, −8.868401041890021916366997248338, −7.72530540993336586635617580648, −6.60675437585304546033138602611, −5.92605702716210187285726196574, −5.15300532702557155601065444024, −4.08511656816808199700971225521, −3.11465284313523722852632980688, −1.54621856131966482297716637550,
0.67013906921263800885978198223, 1.66365571345954954663020420512, 3.40055227569781238490486897057, 4.58849904711146500785721511897, 5.34614504039244098985602836906, 6.34615967275693922348655903233, 7.04033957252983563881033135205, 8.224234451432649231122749530786, 8.381599422321842553207303437059, 10.00444235064244238458761609109