L(s) = 1 | + (1.12 − 0.465i)3-s + i·4-s + (−0.0999 − 0.241i)5-s + (−0.607 + 1.46i)7-s + (0.341 − 0.341i)9-s + (0.465 + 1.12i)12-s + (−0.224 − 0.224i)15-s − 16-s + (0.707 − 0.707i)17-s + (0.707 + 0.707i)19-s + (0.241 − 0.0999i)20-s + 1.93i·21-s + (0.658 − 0.658i)25-s + (−0.241 + 0.582i)27-s + (−1.46 − 0.607i)28-s + (−0.465 − 1.12i)29-s + ⋯ |
L(s) = 1 | + (1.12 − 0.465i)3-s + i·4-s + (−0.0999 − 0.241i)5-s + (−0.607 + 1.46i)7-s + (0.341 − 0.341i)9-s + (0.465 + 1.12i)12-s + (−0.224 − 0.224i)15-s − 16-s + (0.707 − 0.707i)17-s + (0.707 + 0.707i)19-s + (0.241 − 0.0999i)20-s + 1.93i·21-s + (0.658 − 0.658i)25-s + (−0.241 + 0.582i)27-s + (−1.46 − 0.607i)28-s + (−0.465 − 1.12i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1003 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.739 - 0.673i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1003 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.739 - 0.673i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.332393544\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.332393544\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 + (-0.707 + 0.707i)T \) |
| 59 | \( 1 + (-0.707 + 0.707i)T \) |
good | 2 | \( 1 - iT^{2} \) |
| 3 | \( 1 + (-1.12 + 0.465i)T + (0.707 - 0.707i)T^{2} \) |
| 5 | \( 1 + (0.0999 + 0.241i)T + (-0.707 + 0.707i)T^{2} \) |
| 7 | \( 1 + (0.607 - 1.46i)T + (-0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 19 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 23 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 29 | \( 1 + (0.465 + 1.12i)T + (-0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 37 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 41 | \( 1 + (-0.0999 + 0.241i)T + (-0.707 - 0.707i)T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (1.22 + 1.22i)T + iT^{2} \) |
| 61 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (-0.707 + 0.292i)T + (0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 + (1.83 + 0.758i)T + (0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.828513055819595407171065460676, −9.230857563662291723227343952443, −8.496418119754159005384381973779, −7.985255010083625687479846297314, −7.20180996617331680831069501536, −6.10052480296346528660501352599, −5.04177756439518457701337583630, −3.60384124086231015910307526542, −2.91875205153366249179164225574, −2.14175756377514327769747975781,
1.27293537117150382696958656217, 2.92714621327352683400653285945, 3.68395362707258442720718035022, 4.62673586418386036347261117615, 5.78929304210680759859543346959, 6.88927375547154167343491511026, 7.46530159203049109349038518785, 8.605956102417916331923467213766, 9.445841793249156941886937640375, 9.949728972081556901502819962510