L(s) = 1 | + (−0.669 − 1.15i)2-s + (0.978 − 1.69i)3-s + (−0.395 + 0.684i)4-s − 2.61·6-s + (0.913 − 0.406i)7-s − 0.279·8-s + (−1.41 − 2.44i)9-s + (−0.5 + 0.866i)11-s + (0.773 + 1.34i)12-s + 13-s + (−1.08 − 0.786i)14-s + (0.582 + 1.00i)16-s + (−1.89 + 3.27i)18-s + (−0.309 − 0.535i)19-s + (0.204 − 1.94i)21-s + 1.33·22-s + ⋯ |
L(s) = 1 | + (−0.669 − 1.15i)2-s + (0.978 − 1.69i)3-s + (−0.395 + 0.684i)4-s − 2.61·6-s + (0.913 − 0.406i)7-s − 0.279·8-s + (−1.41 − 2.44i)9-s + (−0.5 + 0.866i)11-s + (0.773 + 1.34i)12-s + 13-s + (−1.08 − 0.786i)14-s + (0.582 + 1.00i)16-s + (−1.89 + 3.27i)18-s + (−0.309 − 0.535i)19-s + (0.204 − 1.94i)21-s + 1.33·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1001 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.985 - 0.167i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1001 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.985 - 0.167i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.023471244\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.023471244\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-0.913 + 0.406i)T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 - T \) |
good | 2 | \( 1 + (0.669 + 1.15i)T + (-0.5 + 0.866i)T^{2} \) |
| 3 | \( 1 + (-0.978 + 1.69i)T + (-0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.309 + 0.535i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.809 - 1.40i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + 0.209T + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.309 - 0.535i)T + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.669 - 1.15i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - 1.82T + T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.522117272626320853057058435359, −8.939747083663714567984986774601, −8.133799164494837654565315573496, −7.53309272830723762668268182571, −6.72898556195103827618720215973, −5.54250231386349912613705253295, −3.81414431267593564045869585381, −2.84456870432915912409703444442, −1.83301125196077417424929001087, −1.24108238321770155992389286182,
2.51360961361325412695400672897, 3.53481488399849844749850865736, 4.62941653134942687552717534482, 5.45578159777470808857796637133, 6.28624942780052549024350540905, 7.84200598708165240973565980618, 8.317269528238627306996087573382, 8.709758559736454440974410229329, 9.407229122645114795581990121432, 10.48915006093209395968395597696