L(s) = 1 | + (90.6 − 90.6i)3-s + (−2.97e3 − 2.97e3i)7-s − 9.86e3i·9-s − 6.64e3·11-s + (−2.98e4 + 2.98e4i)13-s + (7.03e4 + 7.03e4i)17-s − 4.10e4i·19-s − 5.38e5·21-s + (−3.51e5 + 3.51e5i)23-s + (−2.99e5 − 2.99e5i)27-s − 6.59e5i·29-s + 1.00e6·31-s + (−6.02e5 + 6.02e5i)33-s + (1.35e4 + 1.35e4i)37-s + 5.41e6i·39-s + ⋯ |
L(s) = 1 | + (1.11 − 1.11i)3-s + (−1.23 − 1.23i)7-s − 1.50i·9-s − 0.453·11-s + (−1.04 + 1.04i)13-s + (0.842 + 0.842i)17-s − 0.314i·19-s − 2.76·21-s + (−1.25 + 1.25i)23-s + (−0.563 − 0.563i)27-s − 0.932i·29-s + 1.08·31-s + (−0.507 + 0.507i)33-s + (0.00723 + 0.00723i)37-s + 2.33i·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.608 - 0.793i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.608 - 0.793i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(0.201663 + 0.408807i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.201663 + 0.408807i\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-90.6 + 90.6i)T - 6.56e3iT^{2} \) |
| 7 | \( 1 + (2.97e3 + 2.97e3i)T + 5.76e6iT^{2} \) |
| 11 | \( 1 + 6.64e3T + 2.14e8T^{2} \) |
| 13 | \( 1 + (2.98e4 - 2.98e4i)T - 8.15e8iT^{2} \) |
| 17 | \( 1 + (-7.03e4 - 7.03e4i)T + 6.97e9iT^{2} \) |
| 19 | \( 1 + 4.10e4iT - 1.69e10T^{2} \) |
| 23 | \( 1 + (3.51e5 - 3.51e5i)T - 7.83e10iT^{2} \) |
| 29 | \( 1 + 6.59e5iT - 5.00e11T^{2} \) |
| 31 | \( 1 - 1.00e6T + 8.52e11T^{2} \) |
| 37 | \( 1 + (-1.35e4 - 1.35e4i)T + 3.51e12iT^{2} \) |
| 41 | \( 1 - 1.01e6T + 7.98e12T^{2} \) |
| 43 | \( 1 + (-2.43e6 + 2.43e6i)T - 1.16e13iT^{2} \) |
| 47 | \( 1 + (4.91e6 + 4.91e6i)T + 2.38e13iT^{2} \) |
| 53 | \( 1 + (8.64e6 - 8.64e6i)T - 6.22e13iT^{2} \) |
| 59 | \( 1 + 1.29e7iT - 1.46e14T^{2} \) |
| 61 | \( 1 + 1.00e7T + 1.91e14T^{2} \) |
| 67 | \( 1 + (1.52e7 + 1.52e7i)T + 4.06e14iT^{2} \) |
| 71 | \( 1 + 4.11e7T + 6.45e14T^{2} \) |
| 73 | \( 1 + (1.73e7 - 1.73e7i)T - 8.06e14iT^{2} \) |
| 79 | \( 1 + 2.57e7iT - 1.51e15T^{2} \) |
| 83 | \( 1 + (5.97e7 - 5.97e7i)T - 2.25e15iT^{2} \) |
| 89 | \( 1 - 3.34e7iT - 3.93e15T^{2} \) |
| 97 | \( 1 + (1.14e7 + 1.14e7i)T + 7.83e15iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.96652547736845147725980873980, −10.17638077637569441811204085625, −9.428438564990390837782521212925, −7.928023194882155089909293441462, −7.28266532353304041487586940966, −6.27036237108374822515222973799, −4.04275410044438148140141621480, −2.89424752418354144190209566543, −1.58139953080654495329620612805, −0.10227697867181620138253633792,
2.68728849122081953277280267193, 3.05710799264954046496137482897, 4.72092118661008768269328452647, 5.95639657167360484848237844703, 7.77872783633453840613758175150, 8.799947980739264027551960197297, 9.810469059108087322135037263477, 10.20924166059897891938571420344, 12.11246320279936917643555542879, 12.90022018451065134713114741287