Properties

Label 2-10e2-4.3-c8-0-69
Degree $2$
Conductor $100$
Sign $0.00639 - 0.999i$
Analytic cond. $40.7378$
Root an. cond. $6.38262$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−11.3 + 11.2i)2-s − 137. i·3-s + (1.63 − 255. i)4-s + (1.54e3 + 1.55e3i)6-s − 3.94e3i·7-s + (2.86e3 + 2.92e3i)8-s − 1.22e4·9-s + 1.70e4i·11-s + (−3.51e4 − 224. i)12-s − 1.09e4·13-s + (4.44e4 + 4.47e4i)14-s + (−6.55e4 − 837. i)16-s − 1.01e5·17-s + (1.39e5 − 1.38e5i)18-s − 9.34e4i·19-s + ⋯
L(s)  = 1  + (−0.709 + 0.704i)2-s − 1.69i·3-s + (0.00639 − 0.999i)4-s + (1.19 + 1.20i)6-s − 1.64i·7-s + (0.700 + 0.713i)8-s − 1.87·9-s + 1.16i·11-s + (−1.69 − 0.0108i)12-s − 0.382·13-s + (1.15 + 1.16i)14-s + (−0.999 − 0.0127i)16-s − 1.21·17-s + (1.32 − 1.32i)18-s − 0.716i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.00639 - 0.999i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.00639 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(100\)    =    \(2^{2} \cdot 5^{2}\)
Sign: $0.00639 - 0.999i$
Analytic conductor: \(40.7378\)
Root analytic conductor: \(6.38262\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{100} (51, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 100,\ (\ :4),\ 0.00639 - 0.999i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.00976094 + 0.00969875i\)
\(L(\frac12)\) \(\approx\) \(0.00976094 + 0.00969875i\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (11.3 - 11.2i)T \)
5 \( 1 \)
good3 \( 1 + 137. iT - 6.56e3T^{2} \)
7 \( 1 + 3.94e3iT - 5.76e6T^{2} \)
11 \( 1 - 1.70e4iT - 2.14e8T^{2} \)
13 \( 1 + 1.09e4T + 8.15e8T^{2} \)
17 \( 1 + 1.01e5T + 6.97e9T^{2} \)
19 \( 1 + 9.34e4iT - 1.69e10T^{2} \)
23 \( 1 - 1.47e5iT - 7.83e10T^{2} \)
29 \( 1 - 4.16e4T + 5.00e11T^{2} \)
31 \( 1 - 1.38e5iT - 8.52e11T^{2} \)
37 \( 1 + 1.14e6T + 3.51e12T^{2} \)
41 \( 1 - 3.83e6T + 7.98e12T^{2} \)
43 \( 1 + 3.18e6iT - 1.16e13T^{2} \)
47 \( 1 - 3.51e6iT - 2.38e13T^{2} \)
53 \( 1 + 5.66e6T + 6.22e13T^{2} \)
59 \( 1 - 1.69e7iT - 1.46e14T^{2} \)
61 \( 1 + 5.16e6T + 1.91e14T^{2} \)
67 \( 1 + 1.05e7iT - 4.06e14T^{2} \)
71 \( 1 - 1.85e7iT - 6.45e14T^{2} \)
73 \( 1 + 2.38e6T + 8.06e14T^{2} \)
79 \( 1 + 4.42e7iT - 1.51e15T^{2} \)
83 \( 1 + 1.51e7iT - 2.25e15T^{2} \)
89 \( 1 + 5.42e7T + 3.93e15T^{2} \)
97 \( 1 - 1.24e8T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.40096727960240932760436112246, −10.33248269147703197718953261200, −8.988868245864477138200157814429, −7.51228969010259589102767377216, −7.28553537934170072785271088499, −6.37406522355593417834170678531, −4.62409845833332762111565837787, −2.12865077949132502476398293919, −1.04067463158832023055156801679, −0.00560227040864980506614888783, 2.37045606246819870319753204252, 3.39573092205460022342666459491, 4.72043812645438553777565190508, 6.02310065786819734973088076490, 8.358307112839211334554102396143, 8.955186152125424930950484996786, 9.764367722323692667635415996549, 10.90076145664385800983466478557, 11.53784731180521780637775866169, 12.67526045496188465270536776431

Graph of the $Z$-function along the critical line