Properties

Label 2-10e2-4.3-c8-0-23
Degree $2$
Conductor $100$
Sign $0.0453 - 0.998i$
Analytic cond. $40.7378$
Root an. cond. $6.38262$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−11.5 + 11.0i)2-s − 27.2i·3-s + (11.6 − 255. i)4-s + (301. + 315. i)6-s + 3.32e3i·7-s + (2.69e3 + 3.08e3i)8-s + 5.81e3·9-s − 6.36e3i·11-s + (−6.96e3 − 316. i)12-s + 3.07e4·13-s + (−3.67e4 − 3.84e4i)14-s + (−6.52e4 − 5.94e3i)16-s − 1.22e5·17-s + (−6.73e4 + 6.43e4i)18-s + 7.55e3i·19-s + ⋯
L(s)  = 1  + (−0.722 + 0.690i)2-s − 0.336i·3-s + (0.0453 − 0.998i)4-s + (0.232 + 0.243i)6-s + 1.38i·7-s + (0.657 + 0.753i)8-s + 0.886·9-s − 0.434i·11-s + (−0.335 − 0.0152i)12-s + 1.07·13-s + (−0.956 − 1.00i)14-s + (−0.995 − 0.0906i)16-s − 1.46·17-s + (−0.641 + 0.612i)18-s + 0.0579i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0453 - 0.998i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.0453 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(100\)    =    \(2^{2} \cdot 5^{2}\)
Sign: $0.0453 - 0.998i$
Analytic conductor: \(40.7378\)
Root analytic conductor: \(6.38262\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{100} (51, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 100,\ (\ :4),\ 0.0453 - 0.998i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.994506 + 0.950345i\)
\(L(\frac12)\) \(\approx\) \(0.994506 + 0.950345i\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (11.5 - 11.0i)T \)
5 \( 1 \)
good3 \( 1 + 27.2iT - 6.56e3T^{2} \)
7 \( 1 - 3.32e3iT - 5.76e6T^{2} \)
11 \( 1 + 6.36e3iT - 2.14e8T^{2} \)
13 \( 1 - 3.07e4T + 8.15e8T^{2} \)
17 \( 1 + 1.22e5T + 6.97e9T^{2} \)
19 \( 1 - 7.55e3iT - 1.69e10T^{2} \)
23 \( 1 + 4.06e5iT - 7.83e10T^{2} \)
29 \( 1 - 8.28e5T + 5.00e11T^{2} \)
31 \( 1 - 1.39e6iT - 8.52e11T^{2} \)
37 \( 1 - 3.86e5T + 3.51e12T^{2} \)
41 \( 1 + 9.72e5T + 7.98e12T^{2} \)
43 \( 1 - 4.61e6iT - 1.16e13T^{2} \)
47 \( 1 - 1.87e6iT - 2.38e13T^{2} \)
53 \( 1 - 8.01e6T + 6.22e13T^{2} \)
59 \( 1 - 6.18e6iT - 1.46e14T^{2} \)
61 \( 1 - 9.79e6T + 1.91e14T^{2} \)
67 \( 1 + 1.19e6iT - 4.06e14T^{2} \)
71 \( 1 - 3.62e7iT - 6.45e14T^{2} \)
73 \( 1 + 3.35e7T + 8.06e14T^{2} \)
79 \( 1 + 1.22e6iT - 1.51e15T^{2} \)
83 \( 1 - 6.96e7iT - 2.25e15T^{2} \)
89 \( 1 - 5.58e7T + 3.93e15T^{2} \)
97 \( 1 - 5.97e7T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.57111829825315130121848622020, −11.29998757605888916319987840332, −10.23870845513598104719014823531, −8.828173539545481986972829063645, −8.432885588270249521109075691182, −6.79786459988678177028836606385, −6.08926423100352639771631533607, −4.66011491981385187530418879858, −2.40504116674588441428504929629, −1.07583856694949742786361108296, 0.60606477858858405659166525140, 1.80026993330052525792997354118, 3.68574615421502994648260971096, 4.41249750713626829546791844388, 6.75693681580545006699568630382, 7.63831818847471751967962230187, 8.976756938154305780142837833180, 10.05016980653358302008581063662, 10.72348433065405962433852267899, 11.68180992052643070208821355943

Graph of the $Z$-function along the critical line