L(s) = 1 | + (0.178 + 1.40i)2-s + (−1.58 + 1.58i)3-s + (−1.93 + 0.5i)4-s + (−2.50 − 1.93i)6-s + (−1.04 − 2.62i)8-s − 2.00i·9-s + 3.87i·11-s + (2.27 − 3.85i)12-s + (2.44 + 2.44i)13-s + (3.50 − 1.93i)16-s + (−1.22 + 1.22i)17-s + (2.80 − 0.356i)18-s + 3.87·19-s + (−5.43 + 0.690i)22-s + (3.16 − 3.16i)23-s + (5.80 + 2.5i)24-s + ⋯ |
L(s) = 1 | + (0.126 + 0.992i)2-s + (−0.912 + 0.912i)3-s + (−0.968 + 0.250i)4-s + (−1.02 − 0.790i)6-s + (−0.370 − 0.929i)8-s − 0.666i·9-s + 1.16i·11-s + (0.655 − 1.11i)12-s + (0.679 + 0.679i)13-s + (0.875 − 0.484i)16-s + (−0.297 + 0.297i)17-s + (0.661 − 0.0840i)18-s + 0.888·19-s + (−1.15 + 0.147i)22-s + (0.659 − 0.659i)23-s + (1.18 + 0.510i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.920 - 0.390i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.920 - 0.390i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.143458 + 0.704857i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.143458 + 0.704857i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.178 - 1.40i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (1.58 - 1.58i)T - 3iT^{2} \) |
| 7 | \( 1 + 7iT^{2} \) |
| 11 | \( 1 - 3.87iT - 11T^{2} \) |
| 13 | \( 1 + (-2.44 - 2.44i)T + 13iT^{2} \) |
| 17 | \( 1 + (1.22 - 1.22i)T - 17iT^{2} \) |
| 19 | \( 1 - 3.87T + 19T^{2} \) |
| 23 | \( 1 + (-3.16 + 3.16i)T - 23iT^{2} \) |
| 29 | \( 1 - 6iT - 29T^{2} \) |
| 31 | \( 1 + 7.74iT - 31T^{2} \) |
| 37 | \( 1 + (-4.89 + 4.89i)T - 37iT^{2} \) |
| 41 | \( 1 + 3T + 41T^{2} \) |
| 43 | \( 1 - 43iT^{2} \) |
| 47 | \( 1 + (-3.16 - 3.16i)T + 47iT^{2} \) |
| 53 | \( 1 + (-2.44 - 2.44i)T + 53iT^{2} \) |
| 59 | \( 1 + 7.74T + 59T^{2} \) |
| 61 | \( 1 + 8T + 61T^{2} \) |
| 67 | \( 1 + (-4.74 - 4.74i)T + 67iT^{2} \) |
| 71 | \( 1 - 7.74iT - 71T^{2} \) |
| 73 | \( 1 + (3.67 + 3.67i)T + 73iT^{2} \) |
| 79 | \( 1 - 15.4T + 79T^{2} \) |
| 83 | \( 1 + (-1.58 + 1.58i)T - 83iT^{2} \) |
| 89 | \( 1 + 9iT - 89T^{2} \) |
| 97 | \( 1 + (-4.89 + 4.89i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.67542194624050721636510537484, −13.43395109437383051689948818145, −12.29116457259542737476230269727, −11.07773724997059934153128582671, −9.917084702518692040968459234247, −8.996256799795590422668886638854, −7.42766243236485520427919435254, −6.22371850199807023189197318189, −5.03408410897741448179560796386, −4.09557482877572237590136572092,
1.01644229967772285059616179637, 3.25918007032581744874915288191, 5.25136557700307347266929608206, 6.25909002686103229703502461716, 7.914333125891463901939862405195, 9.210298773541255059925592427787, 10.68772123168303758056115769258, 11.42259768772416056188912151481, 12.20385119259834384710951630867, 13.30794283828935799947615384050