Properties

Label 4-93312-1.1-c1e2-0-1
Degree $4$
Conductor $93312$
Sign $1$
Analytic cond. $5.94965$
Root an. cond. $1.56179$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s − 6·11-s + 16-s − 5·19-s + 6·22-s + 8·25-s − 32-s + 5·38-s + 15·41-s + 7·43-s − 6·44-s + 5·49-s − 8·50-s − 3·59-s + 64-s + 10·67-s − 5·73-s − 5·76-s − 15·82-s + 21·83-s − 7·86-s + 6·88-s + 18·89-s + 16·97-s − 5·98-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s − 1.80·11-s + 1/4·16-s − 1.14·19-s + 1.27·22-s + 8/5·25-s − 0.176·32-s + 0.811·38-s + 2.34·41-s + 1.06·43-s − 0.904·44-s + 5/7·49-s − 1.13·50-s − 0.390·59-s + 1/8·64-s + 1.22·67-s − 0.585·73-s − 0.573·76-s − 1.65·82-s + 2.30·83-s − 0.754·86-s + 0.639·88-s + 1.90·89-s + 1.62·97-s − 0.505·98-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 93312 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93312 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(93312\)    =    \(2^{7} \cdot 3^{6}\)
Sign: $1$
Analytic conductor: \(5.94965\)
Root analytic conductor: \(1.56179\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 93312,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8694564229\)
\(L(\frac12)\) \(\approx\) \(0.8694564229\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3 \( 1 \)
good5$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
23$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 40 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 52 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + T + p T^{2} ) \)
47$C_2^2$ \( 1 - 59 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
61$C_2^2$ \( 1 + 112 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 103 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + p T^{2} ) \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.458409839008251173248928193754, −9.175546382853204689716082168852, −8.656867227583233678012818174756, −8.082212802889382388188676137660, −7.74009858595133668943213493996, −7.29070272123673306221124555605, −6.64286022823718963402047851135, −6.09558515130673864815367142993, −5.54934240217595040540496676447, −4.90444653422574791380984398340, −4.37043664329120792258997883679, −3.44887876808808918031065623865, −2.57822411195881754594425958622, −2.26985252840327432910532308213, −0.76476526582840185520577322367, 0.76476526582840185520577322367, 2.26985252840327432910532308213, 2.57822411195881754594425958622, 3.44887876808808918031065623865, 4.37043664329120792258997883679, 4.90444653422574791380984398340, 5.54934240217595040540496676447, 6.09558515130673864815367142993, 6.64286022823718963402047851135, 7.29070272123673306221124555605, 7.74009858595133668943213493996, 8.082212802889382388188676137660, 8.656867227583233678012818174756, 9.175546382853204689716082168852, 9.458409839008251173248928193754

Graph of the $Z$-function along the critical line