Properties

Label 4-490931-1.1-c1e2-0-0
Degree $4$
Conductor $490931$
Sign $-1$
Analytic cond. $31.3021$
Root an. cond. $2.36534$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s + 3·4-s − 4·7-s − 3·8-s + 7·11-s − 12·14-s − 13·16-s + 21·22-s + 7·23-s − 25-s − 12·28-s − 11·29-s − 15·32-s − 11·37-s − 11·43-s + 21·44-s + 21·46-s + 9·49-s − 3·50-s + 12·53-s + 12·56-s − 33·58-s + 3·64-s + 4·67-s − 14·71-s − 33·74-s − 28·77-s + ⋯
L(s)  = 1  + 2.12·2-s + 3/2·4-s − 1.51·7-s − 1.06·8-s + 2.11·11-s − 3.20·14-s − 3.25·16-s + 4.47·22-s + 1.45·23-s − 1/5·25-s − 2.26·28-s − 2.04·29-s − 2.65·32-s − 1.80·37-s − 1.67·43-s + 3.16·44-s + 3.09·46-s + 9/7·49-s − 0.424·50-s + 1.64·53-s + 1.60·56-s − 4.33·58-s + 3/8·64-s + 0.488·67-s − 1.66·71-s − 3.83·74-s − 3.19·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 490931 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490931 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(490931\)    =    \(7^{2} \cdot 43 \cdot 233\)
Sign: $-1$
Analytic conductor: \(31.3021\)
Root analytic conductor: \(2.36534\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 490931,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7$C_2$ \( 1 + 4 T + p T^{2} \)
43$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 12 T + p T^{2} ) \)
233$C_1$$\times$$C_2$ \( ( 1 - T )( 1 - 17 T + p T^{2} ) \)
good2$C_2$$\times$$C_2$ \( ( 1 - p T + p T^{2} )( 1 - T + p T^{2} ) \)
3$C_2^2$ \( 1 + p^{2} T^{4} \)
5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
13$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 28 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 24 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 31 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 15 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 23 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 14 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 23 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 17 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 86 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 160 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.664661374828560006517928432444, −7.51419878345776476895656049749, −6.90493869783676048795445523203, −6.81502152752977894984630037781, −6.31176939053061048064459795969, −5.83288254627329073984440093653, −5.44812737047945220470486651350, −4.97876014032945039057441134814, −4.34044636567938521802042748416, −3.81588306536316147667079427256, −3.55983058220673153140508470846, −3.27368896480593856424682989775, −2.50546353756040317442935144100, −1.44976440109687326095439055240, 0, 1.44976440109687326095439055240, 2.50546353756040317442935144100, 3.27368896480593856424682989775, 3.55983058220673153140508470846, 3.81588306536316147667079427256, 4.34044636567938521802042748416, 4.97876014032945039057441134814, 5.44812737047945220470486651350, 5.83288254627329073984440093653, 6.31176939053061048064459795969, 6.81502152752977894984630037781, 6.90493869783676048795445523203, 7.51419878345776476895656049749, 8.664661374828560006517928432444

Graph of the $Z$-function along the critical line