Properties

Label 4-1152e2-1.1-c1e2-0-63
Degree $4$
Conductor $1327104$
Sign $-1$
Analytic cond. $84.6173$
Root an. cond. $3.03294$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s − 4·13-s − 8·17-s + 2·25-s + 12·29-s + 4·37-s − 24·41-s − 10·49-s + 12·53-s + 20·61-s − 16·65-s + 4·73-s − 32·85-s + 16·89-s − 4·97-s + 12·101-s − 36·109-s − 16·113-s − 6·121-s − 28·125-s + 127-s + 131-s + 137-s + 139-s + 48·145-s + 149-s + 151-s + ⋯
L(s)  = 1  + 1.78·5-s − 1.10·13-s − 1.94·17-s + 2/5·25-s + 2.22·29-s + 0.657·37-s − 3.74·41-s − 1.42·49-s + 1.64·53-s + 2.56·61-s − 1.98·65-s + 0.468·73-s − 3.47·85-s + 1.69·89-s − 0.406·97-s + 1.19·101-s − 3.44·109-s − 1.50·113-s − 0.545·121-s − 2.50·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 3.98·145-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1327104 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1327104 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1327104\)    =    \(2^{14} \cdot 3^{4}\)
Sign: $-1$
Analytic conductor: \(84.6173\)
Root analytic conductor: \(3.03294\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1327104,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84652290203924509416522386179, −7.07290137067261705026994657338, −6.62751242713174496166735466724, −6.62630504499756739471306360707, −6.15420646659294641678088585030, −5.39382132947189393802299472560, −5.14932968174065587920886153262, −4.82152978324827041241210558809, −4.19902739124228802218338857400, −3.59372732811385513436205218547, −2.78285477570770474698242693497, −2.28896400528402159654461092906, −2.07793680595226141750788729163, −1.27289759970492945430986166195, 0, 1.27289759970492945430986166195, 2.07793680595226141750788729163, 2.28896400528402159654461092906, 2.78285477570770474698242693497, 3.59372732811385513436205218547, 4.19902739124228802218338857400, 4.82152978324827041241210558809, 5.14932968174065587920886153262, 5.39382132947189393802299472560, 6.15420646659294641678088585030, 6.62630504499756739471306360707, 6.62751242713174496166735466724, 7.07290137067261705026994657338, 7.84652290203924509416522386179

Graph of the $Z$-function along the critical line