Properties

Label 4-71424-1.1-c1e2-0-8
Degree $4$
Conductor $71424$
Sign $-1$
Analytic cond. $4.55405$
Root an. cond. $1.46082$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 3·7-s − 2·9-s − 5·13-s − 7·19-s − 3·21-s − 7·25-s + 5·27-s + 4·31-s − 9·37-s + 5·39-s − 2·43-s − 7·49-s + 7·57-s − 11·61-s − 6·63-s + 10·67-s + 13·73-s + 7·75-s − 9·79-s + 81-s − 15·91-s − 4·93-s − 2·97-s − 25·103-s − 9·109-s + 9·111-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.13·7-s − 2/3·9-s − 1.38·13-s − 1.60·19-s − 0.654·21-s − 7/5·25-s + 0.962·27-s + 0.718·31-s − 1.47·37-s + 0.800·39-s − 0.304·43-s − 49-s + 0.927·57-s − 1.40·61-s − 0.755·63-s + 1.22·67-s + 1.52·73-s + 0.808·75-s − 1.01·79-s + 1/9·81-s − 1.57·91-s − 0.414·93-s − 0.203·97-s − 2.46·103-s − 0.862·109-s + 0.854·111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 71424 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 71424 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(71424\)    =    \(2^{8} \cdot 3^{2} \cdot 31\)
Sign: $-1$
Analytic conductor: \(4.55405\)
Root analytic conductor: \(1.46082\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 71424,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + T + p T^{2} \)
31$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 5 T + p T^{2} ) \)
good5$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
7$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 - T + p T^{2} ) \)
11$C_2^2$ \( 1 - 21 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 23 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 68 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 157 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 72 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.733842098132795413336316861401, −9.012720569710318579302723316031, −8.440319378902538863652513828177, −8.079743453939254536273309811449, −7.69851372523135654882469391175, −6.81966604208790228380394133191, −6.56895659176718719435570656418, −5.74591405816308452711486557257, −5.33371054209633628102910099290, −4.70033648388387210857421129256, −4.35438128134365865488605170476, −3.36269409628234175254002555523, −2.41170878034698080184969794152, −1.77431610907885565269488703309, 0, 1.77431610907885565269488703309, 2.41170878034698080184969794152, 3.36269409628234175254002555523, 4.35438128134365865488605170476, 4.70033648388387210857421129256, 5.33371054209633628102910099290, 5.74591405816308452711486557257, 6.56895659176718719435570656418, 6.81966604208790228380394133191, 7.69851372523135654882469391175, 8.079743453939254536273309811449, 8.440319378902538863652513828177, 9.012720569710318579302723316031, 9.733842098132795413336316861401

Graph of the $Z$-function along the critical line