Properties

Label 4-691200-1.1-c1e2-0-47
Degree $4$
Conductor $691200$
Sign $1$
Analytic cond. $44.0715$
Root an. cond. $2.57655$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 8·7-s + 9-s + 12·13-s − 8·19-s + 8·21-s + 25-s + 27-s + 8·31-s − 20·37-s + 12·39-s + 8·43-s + 34·49-s − 8·57-s − 20·61-s + 8·63-s − 24·67-s + 20·73-s + 75-s + 8·79-s + 81-s + 96·91-s + 8·93-s − 28·97-s − 8·103-s − 4·109-s − 20·111-s + ⋯
L(s)  = 1  + 0.577·3-s + 3.02·7-s + 1/3·9-s + 3.32·13-s − 1.83·19-s + 1.74·21-s + 1/5·25-s + 0.192·27-s + 1.43·31-s − 3.28·37-s + 1.92·39-s + 1.21·43-s + 34/7·49-s − 1.05·57-s − 2.56·61-s + 1.00·63-s − 2.93·67-s + 2.34·73-s + 0.115·75-s + 0.900·79-s + 1/9·81-s + 10.0·91-s + 0.829·93-s − 2.84·97-s − 0.788·103-s − 0.383·109-s − 1.89·111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 691200 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 691200 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(691200\)    =    \(2^{10} \cdot 3^{3} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(44.0715\)
Root analytic conductor: \(2.57655\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 691200,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.470350448\)
\(L(\frac12)\) \(\approx\) \(4.470350448\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 - T \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good7$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.234396477105587706249662636004, −8.116410983938513625426203426805, −7.75866687525969370360077670275, −7.03872324148136889156556818396, −6.39854886739801755961916412419, −6.21305657818228885677430783028, −5.44404884721337967389713010913, −5.11098268655570501466709405394, −4.36333484257300403943968845908, −4.23445324460423189498619158076, −3.69324260965892944900735137760, −2.94053502252576914533622368524, −2.02785893596435789244461953313, −1.47970352314852327908767006362, −1.31634970517745226225569387554, 1.31634970517745226225569387554, 1.47970352314852327908767006362, 2.02785893596435789244461953313, 2.94053502252576914533622368524, 3.69324260965892944900735137760, 4.23445324460423189498619158076, 4.36333484257300403943968845908, 5.11098268655570501466709405394, 5.44404884721337967389713010913, 6.21305657818228885677430783028, 6.39854886739801755961916412419, 7.03872324148136889156556818396, 7.75866687525969370360077670275, 8.116410983938513625426203426805, 8.234396477105587706249662636004

Graph of the $Z$-function along the critical line