Properties

Label 4-1092e2-1.1-c1e2-0-43
Degree $4$
Conductor $1192464$
Sign $-1$
Analytic cond. $76.0325$
Root an. cond. $2.95290$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 9-s + 2·13-s − 4·19-s − 2·25-s − 4·27-s + 2·31-s + 4·39-s − 20·43-s + 49-s − 8·57-s − 2·61-s − 2·67-s + 6·73-s − 4·75-s − 2·79-s − 11·81-s + 4·93-s − 12·97-s + 8·103-s + 14·109-s + 2·117-s − 10·121-s + 127-s − 40·129-s + 131-s + 137-s + ⋯
L(s)  = 1  + 1.15·3-s + 1/3·9-s + 0.554·13-s − 0.917·19-s − 2/5·25-s − 0.769·27-s + 0.359·31-s + 0.640·39-s − 3.04·43-s + 1/7·49-s − 1.05·57-s − 0.256·61-s − 0.244·67-s + 0.702·73-s − 0.461·75-s − 0.225·79-s − 1.22·81-s + 0.414·93-s − 1.21·97-s + 0.788·103-s + 1.34·109-s + 0.184·117-s − 0.909·121-s + 0.0887·127-s − 3.52·129-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1192464 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1192464 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1192464\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(76.0325\)
Root analytic conductor: \(2.95290\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1192464,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - 2 T + p T^{2} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
13$C_2$ \( 1 - 2 T + p T^{2} \)
good5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 44 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 114 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 40 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.043945394042314888922317801847, −7.37231131387349515731445760589, −7.09757869365676625006137667716, −6.44240832191410372311240555245, −6.18739967856341767734195924203, −5.65669662563406255614726924467, −4.97931365434473032081556124465, −4.66522715600328581707060439735, −3.90711236554140198013672238587, −3.61971784540853340917696518791, −3.12002412558388795839852221862, −2.50298959733082881194172826935, −1.96684834650446670595982820502, −1.34749550489351632879545747408, 0, 1.34749550489351632879545747408, 1.96684834650446670595982820502, 2.50298959733082881194172826935, 3.12002412558388795839852221862, 3.61971784540853340917696518791, 3.90711236554140198013672238587, 4.66522715600328581707060439735, 4.97931365434473032081556124465, 5.65669662563406255614726924467, 6.18739967856341767734195924203, 6.44240832191410372311240555245, 7.09757869365676625006137667716, 7.37231131387349515731445760589, 8.043945394042314888922317801847

Graph of the $Z$-function along the critical line