Properties

Label 4-1069713-1.1-c1e2-0-1
Degree $4$
Conductor $1069713$
Sign $-1$
Analytic cond. $68.2058$
Root an. cond. $2.87379$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $3$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·4-s − 9·7-s + 9-s + 3·12-s − 11·13-s + 5·16-s − 11·19-s + 9·21-s − 6·25-s − 27-s + 27·28-s − 4·31-s − 3·36-s − 17·37-s + 11·39-s − 6·43-s − 5·48-s + 47·49-s + 33·52-s + 11·57-s + 4·61-s − 9·63-s − 3·64-s + 4·67-s − 15·73-s + 6·75-s + ⋯
L(s)  = 1  − 0.577·3-s − 3/2·4-s − 3.40·7-s + 1/3·9-s + 0.866·12-s − 3.05·13-s + 5/4·16-s − 2.52·19-s + 1.96·21-s − 6/5·25-s − 0.192·27-s + 5.10·28-s − 0.718·31-s − 1/2·36-s − 2.79·37-s + 1.76·39-s − 0.914·43-s − 0.721·48-s + 47/7·49-s + 4.57·52-s + 1.45·57-s + 0.512·61-s − 1.13·63-s − 3/8·64-s + 0.488·67-s − 1.75·73-s + 0.692·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1069713 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1069713 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1069713\)    =    \(3^{3} \cdot 39619\)
Sign: $-1$
Analytic conductor: \(68.2058\)
Root analytic conductor: \(2.87379\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((4,\ 1069713,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 + T \)
39619$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 240 T + p T^{2} ) \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 + 5 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 11 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$$\times$$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 109 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 67 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 132 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 + 10 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.10531123862267442755720886101, −6.91068861125947648461952084294, −6.74770088061042244190812925387, −6.00415044082805906307705047103, −5.67765143802959162396333307372, −5.22845980030825968092963043495, −4.56988781748648434498307287256, −4.27762540666330579764028769231, −3.64325917342490411095358911798, −3.32944458358972315161071277409, −2.56484736502393400866351676418, −2.07060944105919913272904773593, 0, 0, 0, 2.07060944105919913272904773593, 2.56484736502393400866351676418, 3.32944458358972315161071277409, 3.64325917342490411095358911798, 4.27762540666330579764028769231, 4.56988781748648434498307287256, 5.22845980030825968092963043495, 5.67765143802959162396333307372, 6.00415044082805906307705047103, 6.74770088061042244190812925387, 6.91068861125947648461952084294, 7.10531123862267442755720886101

Graph of the $Z$-function along the critical line