Properties

Label 4-3280-1.1-c1e2-0-0
Degree $4$
Conductor $3280$
Sign $1$
Analytic cond. $0.209135$
Root an. cond. $0.676249$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s + 5-s − 2·7-s − 3·8-s + 2·9-s + 10-s + 4·11-s − 6·13-s − 2·14-s − 16-s + 4·17-s + 2·18-s − 8·19-s − 20-s + 4·22-s − 4·23-s − 2·25-s − 6·26-s + 2·28-s + 2·29-s − 4·31-s + 5·32-s + 4·34-s − 2·35-s − 2·36-s − 8·38-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s + 0.447·5-s − 0.755·7-s − 1.06·8-s + 2/3·9-s + 0.316·10-s + 1.20·11-s − 1.66·13-s − 0.534·14-s − 1/4·16-s + 0.970·17-s + 0.471·18-s − 1.83·19-s − 0.223·20-s + 0.852·22-s − 0.834·23-s − 2/5·25-s − 1.17·26-s + 0.377·28-s + 0.371·29-s − 0.718·31-s + 0.883·32-s + 0.685·34-s − 0.338·35-s − 1/3·36-s − 1.29·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3280 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3280 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3280\)    =    \(2^{4} \cdot 5 \cdot 41\)
Sign: $1$
Analytic conductor: \(0.209135\)
Root analytic conductor: \(0.676249\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3280,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8958033052\)
\(L(\frac12)\) \(\approx\) \(0.8958033052\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + p T^{2} \)
5$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 2 T + p T^{2} ) \)
41$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 10 T + p T^{2} ) \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$D_{4}$ \( 1 + 2 T - 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - 4 T + 14 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$D_{4}$ \( 1 + 8 T + 46 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$D_{4}$ \( 1 - 2 T + 18 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 4 T - 2 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
53$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
61$D_{4}$ \( 1 + 8 T + 6 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 4 T + 62 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 6 T + 46 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 10 T + 94 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_4$ \( 1 + 12 T + 86 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.1256721050, −17.4196855970, −17.0747116293, −16.7195336646, −15.9556272102, −15.3020051063, −14.6603725862, −14.5070517647, −13.8606204090, −13.3063291969, −12.5139430650, −12.4130745138, −11.9919676509, −10.8880259260, −10.1208824134, −9.65733976669, −9.28522108061, −8.49094104480, −7.53374937238, −6.76572487473, −6.09671014934, −5.41417855631, −4.30479547895, −3.89361585968, −2.45814248636, 2.45814248636, 3.89361585968, 4.30479547895, 5.41417855631, 6.09671014934, 6.76572487473, 7.53374937238, 8.49094104480, 9.28522108061, 9.65733976669, 10.1208824134, 10.8880259260, 11.9919676509, 12.4130745138, 12.5139430650, 13.3063291969, 13.8606204090, 14.5070517647, 14.6603725862, 15.3020051063, 15.9556272102, 16.7195336646, 17.0747116293, 17.4196855970, 18.1256721050

Graph of the $Z$-function along the critical line