Properties

Label 4-18080-1.1-c1e2-0-2
Degree $4$
Conductor $18080$
Sign $-1$
Analytic cond. $1.15279$
Root an. cond. $1.03618$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s − 5-s + 3·8-s − 2·9-s + 10-s − 4·11-s − 16-s + 4·17-s + 2·18-s − 4·19-s + 20-s + 4·22-s − 2·23-s − 2·25-s − 6·29-s − 8·31-s − 5·32-s − 4·34-s + 2·36-s + 4·37-s + 4·38-s − 3·40-s − 4·41-s − 4·43-s + 4·44-s + 2·45-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s − 0.447·5-s + 1.06·8-s − 2/3·9-s + 0.316·10-s − 1.20·11-s − 1/4·16-s + 0.970·17-s + 0.471·18-s − 0.917·19-s + 0.223·20-s + 0.852·22-s − 0.417·23-s − 2/5·25-s − 1.11·29-s − 1.43·31-s − 0.883·32-s − 0.685·34-s + 1/3·36-s + 0.657·37-s + 0.648·38-s − 0.474·40-s − 0.624·41-s − 0.609·43-s + 0.603·44-s + 0.298·45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18080 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18080 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(18080\)    =    \(2^{5} \cdot 5 \cdot 113\)
Sign: $-1$
Analytic conductor: \(1.15279\)
Root analytic conductor: \(1.03618\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 18080,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + p T^{2} \)
5$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 2 T + p T^{2} ) \)
113$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 2 T + p T^{2} ) \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + 4 T + 14 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_4$ \( 1 - 4 T + 6 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 4 T + 20 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 2 T - 24 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 6 T + 34 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 8 T + 50 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 4 T + 54 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 4 T + 10 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 4 T + 46 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 2 T + 76 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 8 T + 88 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 90 T^{2} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 22 T + 246 T^{2} + 22 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 6 T + 82 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 14 T + 150 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 8 T + 46 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 6 T + 82 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 4 T + 22 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.2487816915, −15.7608732300, −15.0968647829, −14.6320907105, −14.3952422624, −13.5852960433, −13.2193926937, −12.8258304104, −12.2659148028, −11.5775217170, −11.1180744664, −10.6182264748, −10.0736371150, −9.69041950471, −8.95846457415, −8.45995724701, −8.05965899946, −7.50398637908, −7.06687532480, −5.80906664538, −5.58538939642, −4.71555215050, −3.95930694063, −3.15960680451, −1.93890918093, 0, 1.93890918093, 3.15960680451, 3.95930694063, 4.71555215050, 5.58538939642, 5.80906664538, 7.06687532480, 7.50398637908, 8.05965899946, 8.45995724701, 8.95846457415, 9.69041950471, 10.0736371150, 10.6182264748, 11.1180744664, 11.5775217170, 12.2659148028, 12.8258304104, 13.2193926937, 13.5852960433, 14.3952422624, 14.6320907105, 15.0968647829, 15.7608732300, 16.2487816915

Graph of the $Z$-function along the critical line