Properties

Label 4-1320-1.1-c1e2-0-0
Degree $4$
Conductor $1320$
Sign $1$
Analytic cond. $0.0841643$
Root an. cond. $0.538619$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s − 4-s − 5-s − 6-s − 3·8-s − 2·9-s − 10-s + 3·11-s + 12-s + 15-s − 16-s + 8·17-s − 2·18-s − 8·19-s + 20-s + 3·22-s − 4·23-s + 3·24-s − 2·25-s + 2·27-s + 12·29-s + 30-s + 5·32-s − 3·33-s + 8·34-s + 2·36-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.447·5-s − 0.408·6-s − 1.06·8-s − 2/3·9-s − 0.316·10-s + 0.904·11-s + 0.288·12-s + 0.258·15-s − 1/4·16-s + 1.94·17-s − 0.471·18-s − 1.83·19-s + 0.223·20-s + 0.639·22-s − 0.834·23-s + 0.612·24-s − 2/5·25-s + 0.384·27-s + 2.22·29-s + 0.182·30-s + 0.883·32-s − 0.522·33-s + 1.37·34-s + 1/3·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1320\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(0.0841643\)
Root analytic conductor: \(0.538619\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1320,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5545856602\)
\(L(\frac12)\) \(\approx\) \(0.5545856602\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + p T^{2} \)
3$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + p T^{2} ) \)
5$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 2 T + p T^{2} ) \)
11$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 4 T + p T^{2} ) \)
good7$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
89$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.4824705242, −19.1551537949, −18.3971489242, −17.6707519500, −17.4769707622, −16.6272610009, −16.4384669514, −15.4732516475, −14.8783607055, −14.2224312943, −14.1819882616, −13.1968432040, −12.3172568607, −12.2305799850, −11.5820474614, −10.8219386531, −9.96467191573, −9.36526770843, −8.24864276848, −8.09899069409, −6.42897107073, −6.16821463973, −5.09766059610, −4.25303028693, −3.25423179226, 3.25423179226, 4.25303028693, 5.09766059610, 6.16821463973, 6.42897107073, 8.09899069409, 8.24864276848, 9.36526770843, 9.96467191573, 10.8219386531, 11.5820474614, 12.2305799850, 12.3172568607, 13.1968432040, 14.1819882616, 14.2224312943, 14.8783607055, 15.4732516475, 16.4384669514, 16.6272610009, 17.4769707622, 17.6707519500, 18.3971489242, 19.1551537949, 19.4824705242

Graph of the $Z$-function along the critical line