Properties

Label 2-99705-1.1-c1-0-5
Degree $2$
Conductor $99705$
Sign $1$
Analytic cond. $796.148$
Root an. cond. $28.2161$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3-s + 2·4-s − 5-s + 2·6-s + 5·7-s + 9-s + 2·10-s + 2·11-s − 2·12-s − 6·13-s − 10·14-s + 15-s − 4·16-s − 2·18-s + 2·19-s − 2·20-s − 5·21-s − 4·22-s + 23-s + 25-s + 12·26-s − 27-s + 10·28-s + 29-s − 2·30-s + 5·31-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.577·3-s + 4-s − 0.447·5-s + 0.816·6-s + 1.88·7-s + 1/3·9-s + 0.632·10-s + 0.603·11-s − 0.577·12-s − 1.66·13-s − 2.67·14-s + 0.258·15-s − 16-s − 0.471·18-s + 0.458·19-s − 0.447·20-s − 1.09·21-s − 0.852·22-s + 0.208·23-s + 1/5·25-s + 2.35·26-s − 0.192·27-s + 1.88·28-s + 0.185·29-s − 0.365·30-s + 0.898·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 99705 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99705 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(99705\)    =    \(3 \cdot 5 \cdot 17^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(796.148\)
Root analytic conductor: \(28.2161\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 99705,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.015477780\)
\(L(\frac12)\) \(\approx\) \(1.015477780\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 + T \)
17 \( 1 \)
23 \( 1 - T \)
good2 \( 1 + p T + p T^{2} \)
7 \( 1 - 5 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
29 \( 1 - T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
41 \( 1 - 7 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 - 3 T + p T^{2} \)
61 \( 1 + 12 T + p T^{2} \)
67 \( 1 + T + p T^{2} \)
71 \( 1 + 5 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 3 T + p T^{2} \)
89 \( 1 - 8 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.71561571096326, −13.39780831262481, −12.39478816142619, −12.03012157105492, −11.65040658235921, −11.25842471335840, −10.83166432317135, −10.28601946410999, −9.752623361010487, −9.377595446064628, −8.731561331377690, −8.192613757508338, −7.786630358631465, −7.508893226062053, −6.898283642786007, −6.417456417398038, −5.444959133101965, −5.012775214793285, −4.458441690624613, −4.229238674310422, −3.005462343560139, −2.294672729614163, −1.676773913590966, −1.099146571028098, −0.4862772367046520, 0.4862772367046520, 1.099146571028098, 1.676773913590966, 2.294672729614163, 3.005462343560139, 4.229238674310422, 4.458441690624613, 5.012775214793285, 5.444959133101965, 6.417456417398038, 6.898283642786007, 7.508893226062053, 7.786630358631465, 8.192613757508338, 8.731561331377690, 9.377595446064628, 9.752623361010487, 10.28601946410999, 10.83166432317135, 11.25842471335840, 11.65040658235921, 12.03012157105492, 12.39478816142619, 13.39780831262481, 13.71561571096326

Graph of the $Z$-function along the critical line