Properties

Label 2-280e2-1.1-c1-0-132
Degree $2$
Conductor $78400$
Sign $-1$
Analytic cond. $626.027$
Root an. cond. $25.0205$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·9-s − 3·11-s − 6·13-s + 5·17-s − 19-s + 7·23-s + 5·27-s − 2·29-s − 5·31-s + 3·33-s + 3·37-s + 6·39-s − 2·41-s − 4·43-s − 5·47-s − 5·51-s − 53-s + 57-s − 15·59-s + 5·61-s − 9·67-s − 7·69-s − 7·73-s + 79-s + 81-s + 12·83-s + ⋯
L(s)  = 1  − 0.577·3-s − 2/3·9-s − 0.904·11-s − 1.66·13-s + 1.21·17-s − 0.229·19-s + 1.45·23-s + 0.962·27-s − 0.371·29-s − 0.898·31-s + 0.522·33-s + 0.493·37-s + 0.960·39-s − 0.312·41-s − 0.609·43-s − 0.729·47-s − 0.700·51-s − 0.137·53-s + 0.132·57-s − 1.95·59-s + 0.640·61-s − 1.09·67-s − 0.842·69-s − 0.819·73-s + 0.112·79-s + 1/9·81-s + 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78400\)    =    \(2^{6} \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(626.027\)
Root analytic conductor: \(25.0205\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 78400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 5 T + p T^{2} \) 1.47.f
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 + 15 T + p T^{2} \) 1.59.p
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 9 T + p T^{2} \) 1.67.j
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 7 T + p T^{2} \) 1.89.ah
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.40373704300861, −13.80633271458384, −13.04579475903208, −12.80676181772934, −12.24665637037801, −11.77897245348543, −11.34636686595183, −10.70912974528585, −10.37008788823985, −9.818503043914863, −9.252361570211660, −8.784173183862590, −8.017847181236795, −7.576631083406161, −7.223709495387684, −6.490351921647446, −5.876730310396333, −5.360481954723052, −4.914135179179730, −4.603829717174844, −3.393535237676124, −3.085020063355817, −2.430722725881676, −1.679208438741799, −0.6724352550660202, 0, 0.6724352550660202, 1.679208438741799, 2.430722725881676, 3.085020063355817, 3.393535237676124, 4.603829717174844, 4.914135179179730, 5.360481954723052, 5.876730310396333, 6.490351921647446, 7.223709495387684, 7.576631083406161, 8.017847181236795, 8.784173183862590, 9.252361570211660, 9.818503043914863, 10.37008788823985, 10.70912974528585, 11.34636686595183, 11.77897245348543, 12.24665637037801, 12.80676181772934, 13.04579475903208, 13.80633271458384, 14.40373704300861

Graph of the $Z$-function along the critical line