Properties

Label 2-68400-1.1-c1-0-57
Degree $2$
Conductor $68400$
Sign $-1$
Analytic cond. $546.176$
Root an. cond. $23.3704$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 2·11-s − 6·13-s − 2·17-s − 19-s − 6·23-s − 8·29-s + 8·31-s − 10·37-s + 4·41-s + 4·43-s − 6·47-s + 9·49-s + 12·53-s − 8·59-s + 2·61-s + 4·67-s + 12·71-s + 10·73-s − 8·77-s + 8·79-s − 2·83-s + 12·89-s + 24·91-s + 14·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 1.51·7-s + 0.603·11-s − 1.66·13-s − 0.485·17-s − 0.229·19-s − 1.25·23-s − 1.48·29-s + 1.43·31-s − 1.64·37-s + 0.624·41-s + 0.609·43-s − 0.875·47-s + 9/7·49-s + 1.64·53-s − 1.04·59-s + 0.256·61-s + 0.488·67-s + 1.42·71-s + 1.17·73-s − 0.911·77-s + 0.900·79-s − 0.219·83-s + 1.27·89-s + 2.51·91-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 68400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 68400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(68400\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(546.176\)
Root analytic conductor: \(23.3704\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 68400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 + 8 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 4 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 2 T + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.36553725489250, −13.89312677979031, −13.42018279765648, −12.86088593786913, −12.27427675779346, −12.16475377247884, −11.52928441323280, −10.79986723139690, −10.18217143491335, −9.898703151306828, −9.285185901573059, −9.108603662790901, −8.207269491745188, −7.687352728252688, −7.067592933959059, −6.582619187653926, −6.259860874605243, −5.476858239712131, −4.978178065429219, −4.120593115377330, −3.782638105159374, −3.059771332235521, −2.357924156791244, −1.927365343718279, −0.6600856253612702, 0, 0.6600856253612702, 1.927365343718279, 2.357924156791244, 3.059771332235521, 3.782638105159374, 4.120593115377330, 4.978178065429219, 5.476858239712131, 6.259860874605243, 6.582619187653926, 7.067592933959059, 7.687352728252688, 8.207269491745188, 9.108603662790901, 9.285185901573059, 9.898703151306828, 10.18217143491335, 10.79986723139690, 11.52928441323280, 12.16475377247884, 12.27427675779346, 12.86088593786913, 13.42018279765648, 13.89312677979031, 14.36553725489250

Graph of the $Z$-function along the critical line