Properties

Label 2-6327-1.1-c1-0-196
Degree $2$
Conductor $6327$
Sign $-1$
Analytic cond. $50.5213$
Root an. cond. $7.10783$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 2·5-s − 7-s − 3·11-s + 6·13-s + 4·16-s − 2·17-s + 19-s − 4·20-s − 25-s + 2·28-s − 6·29-s − 4·31-s − 2·35-s − 37-s − 9·41-s + 4·43-s + 6·44-s + 13·47-s − 6·49-s − 12·52-s − 7·53-s − 6·55-s + 6·59-s + 4·61-s − 8·64-s + 12·65-s + ⋯
L(s)  = 1  − 4-s + 0.894·5-s − 0.377·7-s − 0.904·11-s + 1.66·13-s + 16-s − 0.485·17-s + 0.229·19-s − 0.894·20-s − 1/5·25-s + 0.377·28-s − 1.11·29-s − 0.718·31-s − 0.338·35-s − 0.164·37-s − 1.40·41-s + 0.609·43-s + 0.904·44-s + 1.89·47-s − 6/7·49-s − 1.66·52-s − 0.961·53-s − 0.809·55-s + 0.781·59-s + 0.512·61-s − 64-s + 1.48·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6327 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6327 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6327\)    =    \(3^{2} \cdot 19 \cdot 37\)
Sign: $-1$
Analytic conductor: \(50.5213\)
Root analytic conductor: \(7.10783\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6327,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
19 \( 1 - T \)
37 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 2 T + p T^{2} \) 1.17.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 13 T + p T^{2} \) 1.47.an
53 \( 1 + 7 T + p T^{2} \) 1.53.h
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.83232898124271083281707971886, −6.93391945136498028328413225654, −5.98180953245286252274843936787, −5.65650630158236294319119238295, −4.92467594881027758947017390246, −3.91421461191326929141401946698, −3.38865699236689399911184700581, −2.24852152983438244852663922227, −1.27449595624115841427622182885, 0, 1.27449595624115841427622182885, 2.24852152983438244852663922227, 3.38865699236689399911184700581, 3.91421461191326929141401946698, 4.92467594881027758947017390246, 5.65650630158236294319119238295, 5.98180953245286252274843936787, 6.93391945136498028328413225654, 7.83232898124271083281707971886

Graph of the $Z$-function along the critical line