L(s) = 1 | − 2·4-s + 2·5-s − 7-s − 3·11-s + 6·13-s + 4·16-s − 2·17-s + 19-s − 4·20-s − 25-s + 2·28-s − 6·29-s − 4·31-s − 2·35-s − 37-s − 9·41-s + 4·43-s + 6·44-s + 13·47-s − 6·49-s − 12·52-s − 7·53-s − 6·55-s + 6·59-s + 4·61-s − 8·64-s + 12·65-s + ⋯ |
L(s) = 1 | − 4-s + 0.894·5-s − 0.377·7-s − 0.904·11-s + 1.66·13-s + 16-s − 0.485·17-s + 0.229·19-s − 0.894·20-s − 1/5·25-s + 0.377·28-s − 1.11·29-s − 0.718·31-s − 0.338·35-s − 0.164·37-s − 1.40·41-s + 0.609·43-s + 0.904·44-s + 1.89·47-s − 6/7·49-s − 1.66·52-s − 0.961·53-s − 0.809·55-s + 0.781·59-s + 0.512·61-s − 64-s + 1.48·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6327 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6327 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 3 | \( 1 \) | |
| 19 | \( 1 - T \) | |
| 37 | \( 1 + T \) | |
good | 2 | \( 1 + p T^{2} \) | 1.2.a |
| 5 | \( 1 - 2 T + p T^{2} \) | 1.5.ac |
| 7 | \( 1 + T + p T^{2} \) | 1.7.b |
| 11 | \( 1 + 3 T + p T^{2} \) | 1.11.d |
| 13 | \( 1 - 6 T + p T^{2} \) | 1.13.ag |
| 17 | \( 1 + 2 T + p T^{2} \) | 1.17.c |
| 23 | \( 1 + p T^{2} \) | 1.23.a |
| 29 | \( 1 + 6 T + p T^{2} \) | 1.29.g |
| 31 | \( 1 + 4 T + p T^{2} \) | 1.31.e |
| 41 | \( 1 + 9 T + p T^{2} \) | 1.41.j |
| 43 | \( 1 - 4 T + p T^{2} \) | 1.43.ae |
| 47 | \( 1 - 13 T + p T^{2} \) | 1.47.an |
| 53 | \( 1 + 7 T + p T^{2} \) | 1.53.h |
| 59 | \( 1 - 6 T + p T^{2} \) | 1.59.ag |
| 61 | \( 1 - 4 T + p T^{2} \) | 1.61.ae |
| 67 | \( 1 + 4 T + p T^{2} \) | 1.67.e |
| 71 | \( 1 - 9 T + p T^{2} \) | 1.71.aj |
| 73 | \( 1 - 3 T + p T^{2} \) | 1.73.ad |
| 79 | \( 1 + 12 T + p T^{2} \) | 1.79.m |
| 83 | \( 1 - 3 T + p T^{2} \) | 1.83.ad |
| 89 | \( 1 + 2 T + p T^{2} \) | 1.89.c |
| 97 | \( 1 + 2 T + p T^{2} \) | 1.97.c |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.83232898124271083281707971886, −6.93391945136498028328413225654, −5.98180953245286252274843936787, −5.65650630158236294319119238295, −4.92467594881027758947017390246, −3.91421461191326929141401946698, −3.38865699236689399911184700581, −2.24852152983438244852663922227, −1.27449595624115841427622182885, 0,
1.27449595624115841427622182885, 2.24852152983438244852663922227, 3.38865699236689399911184700581, 3.91421461191326929141401946698, 4.92467594881027758947017390246, 5.65650630158236294319119238295, 5.98180953245286252274843936787, 6.93391945136498028328413225654, 7.83232898124271083281707971886