Properties

Label 2-56350-1.1-c1-0-49
Degree $2$
Conductor $56350$
Sign $-1$
Analytic cond. $449.957$
Root an. cond. $21.2121$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 4-s − 2·6-s − 8-s + 9-s + 2·12-s + 5·13-s + 16-s + 7·17-s − 18-s − 4·19-s + 23-s − 2·24-s − 5·26-s − 4·27-s − 4·31-s − 32-s − 7·34-s + 36-s − 3·37-s + 4·38-s + 10·39-s − 10·41-s − 4·43-s − 46-s + 9·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s + 1/2·4-s − 0.816·6-s − 0.353·8-s + 1/3·9-s + 0.577·12-s + 1.38·13-s + 1/4·16-s + 1.69·17-s − 0.235·18-s − 0.917·19-s + 0.208·23-s − 0.408·24-s − 0.980·26-s − 0.769·27-s − 0.718·31-s − 0.176·32-s − 1.20·34-s + 1/6·36-s − 0.493·37-s + 0.648·38-s + 1.60·39-s − 1.56·41-s − 0.609·43-s − 0.147·46-s + 1.31·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 56350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(56350\)    =    \(2 \cdot 5^{2} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(449.957\)
Root analytic conductor: \(21.2121\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 56350,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 5 T + p T^{2} \)
17 \( 1 - 7 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 3 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 - 3 T + p T^{2} \)
59 \( 1 + 2 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 10 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 + T + p T^{2} \)
83 \( 1 - 5 T + p T^{2} \)
89 \( 1 + T + p T^{2} \)
97 \( 1 + 7 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.66617359433688, −14.20164101393296, −13.65966993456115, −13.25843427069700, −12.64116959195606, −12.04253540204593, −11.56892113143134, −10.85984798288336, −10.48286820282577, −9.921942469858475, −9.379588161862498, −8.774544138899469, −8.508890206527499, −8.050553348342349, −7.514114019162188, −6.912170311263396, −6.288132425359521, −5.643631153852777, −5.159645604812672, −3.968181893640534, −3.681027115599620, −3.080950976792481, −2.439546393319590, −1.641283736052532, −1.163455692946330, 0, 1.163455692946330, 1.641283736052532, 2.439546393319590, 3.080950976792481, 3.681027115599620, 3.968181893640534, 5.159645604812672, 5.643631153852777, 6.288132425359521, 6.912170311263396, 7.514114019162188, 8.050553348342349, 8.508890206527499, 8.774544138899469, 9.379588161862498, 9.921942469858475, 10.48286820282577, 10.85984798288336, 11.56892113143134, 12.04253540204593, 12.64116959195606, 13.25843427069700, 13.65966993456115, 14.20164101393296, 14.66617359433688

Graph of the $Z$-function along the critical line