Properties

Label 2-55770-1.1-c1-0-32
Degree $2$
Conductor $55770$
Sign $1$
Analytic cond. $445.325$
Root an. cond. $21.1027$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s + 7-s − 8-s + 9-s − 10-s − 11-s + 12-s − 14-s + 15-s + 16-s + 6·17-s − 18-s + 5·19-s + 20-s + 21-s + 22-s − 6·23-s − 24-s + 25-s + 27-s + 28-s + 4·29-s − 30-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.301·11-s + 0.288·12-s − 0.267·14-s + 0.258·15-s + 1/4·16-s + 1.45·17-s − 0.235·18-s + 1.14·19-s + 0.223·20-s + 0.218·21-s + 0.213·22-s − 1.25·23-s − 0.204·24-s + 1/5·25-s + 0.192·27-s + 0.188·28-s + 0.742·29-s − 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55770 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55770 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55770\)    =    \(2 \cdot 3 \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(445.325\)
Root analytic conductor: \(21.1027\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 55770,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.249284727\)
\(L(\frac12)\) \(\approx\) \(3.249284727\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 - T \)
11 \( 1 + T \)
13 \( 1 \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 - 9 T + p T^{2} \) 1.61.aj
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 - 13 T + p T^{2} \) 1.79.an
83 \( 1 - 15 T + p T^{2} \) 1.83.ap
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 9 T + p T^{2} \) 1.97.aj
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.35230751574960, −13.95298910768502, −13.66257640919461, −12.65124466862347, −12.39706232518948, −11.92076691247148, −11.15498899456849, −10.76368957763065, −10.04471797597923, −9.704397388207638, −9.433268214380358, −8.557852123202844, −8.186566025997427, −7.675950101226009, −7.320364504145090, −6.509543171755220, −5.971040607658442, −5.280445449171553, −4.904135694987455, −3.743604818998865, −3.509699112272800, −2.495966921520573, −2.206036277528913, −1.233580232256722, −0.7526392940932659, 0.7526392940932659, 1.233580232256722, 2.206036277528913, 2.495966921520573, 3.509699112272800, 3.743604818998865, 4.904135694987455, 5.280445449171553, 5.971040607658442, 6.509543171755220, 7.320364504145090, 7.675950101226009, 8.186566025997427, 8.557852123202844, 9.433268214380358, 9.704397388207638, 10.04471797597923, 10.76368957763065, 11.15498899456849, 11.92076691247148, 12.39706232518948, 12.65124466862347, 13.66257640919461, 13.95298910768502, 14.35230751574960

Graph of the $Z$-function along the critical line