Properties

Label 2-351975-1.1-c1-0-7
Degree $2$
Conductor $351975$
Sign $1$
Analytic cond. $2810.53$
Root an. cond. $53.0144$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3-s + 2·4-s + 2·6-s + 3·7-s + 9-s − 5·11-s + 2·12-s + 13-s + 6·14-s − 4·16-s − 5·17-s + 2·18-s + 3·21-s − 10·22-s + 23-s + 2·26-s + 27-s + 6·28-s − 10·29-s + 2·31-s − 8·32-s − 5·33-s − 10·34-s + 2·36-s − 3·37-s + 39-s + ⋯
L(s)  = 1  + 1.41·2-s + 0.577·3-s + 4-s + 0.816·6-s + 1.13·7-s + 1/3·9-s − 1.50·11-s + 0.577·12-s + 0.277·13-s + 1.60·14-s − 16-s − 1.21·17-s + 0.471·18-s + 0.654·21-s − 2.13·22-s + 0.208·23-s + 0.392·26-s + 0.192·27-s + 1.13·28-s − 1.85·29-s + 0.359·31-s − 1.41·32-s − 0.870·33-s − 1.71·34-s + 1/3·36-s − 0.493·37-s + 0.160·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 351975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 351975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(351975\)    =    \(3 \cdot 5^{2} \cdot 13 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(2810.53\)
Root analytic conductor: \(53.0144\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 351975,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.852879807\)
\(L(\frac12)\) \(\approx\) \(3.852879807\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
13 \( 1 - T \)
19 \( 1 \)
good2 \( 1 - p T + p T^{2} \)
7 \( 1 - 3 T + p T^{2} \)
11 \( 1 + 5 T + p T^{2} \)
17 \( 1 + 5 T + p T^{2} \)
23 \( 1 - T + p T^{2} \)
29 \( 1 + 10 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 + 3 T + p T^{2} \)
41 \( 1 - 9 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 10 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 11 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 15 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 11 T + p T^{2} \)
83 \( 1 + 8 T + p T^{2} \)
89 \( 1 - 11 T + p T^{2} \)
97 \( 1 + 9 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.80112745052234, −12.22921897731782, −11.69674953181382, −11.20429238582209, −10.91689976552204, −10.55632447947197, −9.863790649545607, −9.187277946939322, −8.902596010412610, −8.388002576218213, −7.793937663111217, −7.516975409230467, −7.014258721085052, −6.339254881036309, −5.820668132570775, −5.391973860977773, −4.945076518905391, −4.472585906594823, −4.138487291594142, −3.540951563451646, −2.851795595267761, −2.567768803739728, −1.941105666721035, −1.504793387944356, −0.3401992161952798, 0.3401992161952798, 1.504793387944356, 1.941105666721035, 2.567768803739728, 2.851795595267761, 3.540951563451646, 4.138487291594142, 4.472585906594823, 4.945076518905391, 5.391973860977773, 5.820668132570775, 6.339254881036309, 7.014258721085052, 7.516975409230467, 7.793937663111217, 8.388002576218213, 8.902596010412610, 9.187277946939322, 9.863790649545607, 10.55632447947197, 10.91689976552204, 11.20429238582209, 11.69674953181382, 12.22921897731782, 12.80112745052234

Graph of the $Z$-function along the critical line