Properties

Label 2-331056-1.1-c1-0-89
Degree $2$
Conductor $331056$
Sign $-1$
Analytic cond. $2643.49$
Root an. cond. $51.4149$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 2·7-s + 13-s − 7·17-s − 19-s + 6·23-s + 11·25-s + 4·29-s + 6·31-s − 8·35-s − 8·37-s + 6·41-s + 10·43-s + 4·47-s − 3·49-s + 13·53-s − 5·59-s − 2·61-s − 4·65-s − 14·67-s − 3·71-s + 10·73-s + 13·79-s + 15·83-s + 28·85-s + 7·89-s + 2·91-s + ⋯
L(s)  = 1  − 1.78·5-s + 0.755·7-s + 0.277·13-s − 1.69·17-s − 0.229·19-s + 1.25·23-s + 11/5·25-s + 0.742·29-s + 1.07·31-s − 1.35·35-s − 1.31·37-s + 0.937·41-s + 1.52·43-s + 0.583·47-s − 3/7·49-s + 1.78·53-s − 0.650·59-s − 0.256·61-s − 0.496·65-s − 1.71·67-s − 0.356·71-s + 1.17·73-s + 1.46·79-s + 1.64·83-s + 3.03·85-s + 0.741·89-s + 0.209·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 331056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 331056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(331056\)    =    \(2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(2643.49\)
Root analytic conductor: \(51.4149\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 331056,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
19 \( 1 + T \)
good5 \( 1 + 4 T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 + 7 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 4 T + p T^{2} \)
31 \( 1 - 6 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 10 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 - 13 T + p T^{2} \)
59 \( 1 + 5 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 14 T + p T^{2} \)
71 \( 1 + 3 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 - 13 T + p T^{2} \)
83 \( 1 - 15 T + p T^{2} \)
89 \( 1 - 7 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.58785971697598, −12.26677247708081, −11.99227719473187, −11.30407010736828, −11.14408163584451, −10.61967709547535, −10.50188820560428, −9.435936455234038, −8.970602002550853, −8.624007991452187, −8.327061389740686, −7.667034507665791, −7.420616830030803, −6.849056232732358, −6.477923120406955, −5.838746259124203, −4.882678475749656, −4.843391442497631, −4.255414969332720, −3.878651745786111, −3.270407826136502, −2.625197187357810, −2.189697761689505, −1.180662984270012, −0.7605071758556094, 0, 0.7605071758556094, 1.180662984270012, 2.189697761689505, 2.625197187357810, 3.270407826136502, 3.878651745786111, 4.255414969332720, 4.843391442497631, 4.882678475749656, 5.838746259124203, 6.477923120406955, 6.849056232732358, 7.420616830030803, 7.667034507665791, 8.327061389740686, 8.624007991452187, 8.970602002550853, 9.435936455234038, 10.50188820560428, 10.61967709547535, 11.14408163584451, 11.30407010736828, 11.99227719473187, 12.26677247708081, 12.58785971697598

Graph of the $Z$-function along the critical line