Properties

Label 2-32490-1.1-c1-0-34
Degree $2$
Conductor $32490$
Sign $-1$
Analytic cond. $259.433$
Root an. cond. $16.1069$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 8-s + 10-s + 4·11-s + 2·13-s + 16-s − 4·17-s − 20-s − 4·22-s − 6·23-s + 25-s − 2·26-s + 10·29-s − 2·31-s − 32-s + 4·34-s + 2·37-s + 40-s + 6·41-s − 8·43-s + 4·44-s + 6·46-s + 6·47-s − 7·49-s − 50-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.353·8-s + 0.316·10-s + 1.20·11-s + 0.554·13-s + 1/4·16-s − 0.970·17-s − 0.223·20-s − 0.852·22-s − 1.25·23-s + 1/5·25-s − 0.392·26-s + 1.85·29-s − 0.359·31-s − 0.176·32-s + 0.685·34-s + 0.328·37-s + 0.158·40-s + 0.937·41-s − 1.21·43-s + 0.603·44-s + 0.884·46-s + 0.875·47-s − 49-s − 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32490 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32490 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(32490\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(259.433\)
Root analytic conductor: \(16.1069\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 32490,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
19 \( 1 \)
good7 \( 1 + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 10 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 2 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.47637095184733, −14.76493640006016, −14.36224535928180, −13.78508795846587, −13.21485987121471, −12.45623383861441, −12.01551100553167, −11.55002498474094, −11.05361858324950, −10.52386107036086, −9.858243647343472, −9.373552870652719, −8.771084091938541, −8.300458109065040, −7.889586967510718, −7.013770067983555, −6.560390838627732, −6.199352207657800, −5.359211887543156, −4.383862758191492, −4.085803843352483, −3.275141664761144, −2.511724800252929, −1.676193820674592, −0.9916938879566991, 0, 0.9916938879566991, 1.676193820674592, 2.511724800252929, 3.275141664761144, 4.085803843352483, 4.383862758191492, 5.359211887543156, 6.199352207657800, 6.560390838627732, 7.013770067983555, 7.889586967510718, 8.300458109065040, 8.771084091938541, 9.373552870652719, 9.858243647343472, 10.52386107036086, 11.05361858324950, 11.55002498474094, 12.01551100553167, 12.45623383861441, 13.21485987121471, 13.78508795846587, 14.36224535928180, 14.76493640006016, 15.47637095184733

Graph of the $Z$-function along the critical line