Properties

Label 2-31768-1.1-c1-0-4
Degree $2$
Conductor $31768$
Sign $-1$
Analytic cond. $253.668$
Root an. cond. $15.9269$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 2·7-s + 9-s + 11-s − 5·13-s + 2·17-s − 4·21-s − 8·23-s − 5·25-s + 4·27-s + 5·29-s − 2·33-s − 2·37-s + 10·39-s + 2·41-s − 11·43-s + 9·47-s − 3·49-s − 4·51-s + 2·53-s + 14·59-s + 7·61-s + 2·63-s − 2·67-s + 16·69-s − 3·71-s − 4·73-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.755·7-s + 1/3·9-s + 0.301·11-s − 1.38·13-s + 0.485·17-s − 0.872·21-s − 1.66·23-s − 25-s + 0.769·27-s + 0.928·29-s − 0.348·33-s − 0.328·37-s + 1.60·39-s + 0.312·41-s − 1.67·43-s + 1.31·47-s − 3/7·49-s − 0.560·51-s + 0.274·53-s + 1.82·59-s + 0.896·61-s + 0.251·63-s − 0.244·67-s + 1.92·69-s − 0.356·71-s − 0.468·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 31768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 31768 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(31768\)    =    \(2^{3} \cdot 11 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(253.668\)
Root analytic conductor: \(15.9269\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 31768,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 - T \)
19 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \)
5 \( 1 + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 5 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 - 5 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 11 T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 14 T + p T^{2} \)
61 \( 1 - 7 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 + 3 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 17 T + p T^{2} \)
89 \( 1 - 7 T + p T^{2} \)
97 \( 1 - 7 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.44328743795491, −14.66780246370801, −14.28467532004677, −13.95899174043508, −13.09137375968877, −12.47122866599706, −11.93930235042538, −11.67767315089525, −11.36143783163376, −10.39120281610249, −10.06821835599959, −9.760502290346871, −8.614962127304729, −8.389144990489165, −7.452744084843014, −7.244363498978471, −6.277068346021759, −5.945262292861671, −5.236741388238639, −4.821703110235150, −4.210242662804741, −3.435039894087968, −2.406233885089577, −1.847287665696157, −0.8362709909396113, 0, 0.8362709909396113, 1.847287665696157, 2.406233885089577, 3.435039894087968, 4.210242662804741, 4.821703110235150, 5.236741388238639, 5.945262292861671, 6.277068346021759, 7.244363498978471, 7.452744084843014, 8.389144990489165, 8.614962127304729, 9.760502290346871, 10.06821835599959, 10.39120281610249, 11.36143783163376, 11.67767315089525, 11.93930235042538, 12.47122866599706, 13.09137375968877, 13.95899174043508, 14.28467532004677, 14.66780246370801, 15.44328743795491

Graph of the $Z$-function along the critical line