Properties

Label 2-24400-1.1-c1-0-10
Degree $2$
Conductor $24400$
Sign $1$
Analytic cond. $194.834$
Root an. cond. $13.9583$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·7-s − 2·9-s + 3·11-s + 6·13-s + 3·17-s + 5·19-s − 2·21-s + 4·23-s − 5·27-s + 4·29-s + 2·31-s + 3·33-s + 4·37-s + 6·39-s + 9·41-s + 4·43-s − 3·49-s + 3·51-s + 2·53-s + 5·57-s + 4·59-s − 61-s + 4·63-s + 5·67-s + 4·69-s + 14·71-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.755·7-s − 2/3·9-s + 0.904·11-s + 1.66·13-s + 0.727·17-s + 1.14·19-s − 0.436·21-s + 0.834·23-s − 0.962·27-s + 0.742·29-s + 0.359·31-s + 0.522·33-s + 0.657·37-s + 0.960·39-s + 1.40·41-s + 0.609·43-s − 3/7·49-s + 0.420·51-s + 0.274·53-s + 0.662·57-s + 0.520·59-s − 0.128·61-s + 0.503·63-s + 0.610·67-s + 0.481·69-s + 1.66·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 24400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(24400\)    =    \(2^{4} \cdot 5^{2} \cdot 61\)
Sign: $1$
Analytic conductor: \(194.834\)
Root analytic conductor: \(13.9583\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 24400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.483580001\)
\(L(\frac12)\) \(\approx\) \(3.483580001\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
61 \( 1 + T \)
good3 \( 1 - T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 4 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 - 9 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
67 \( 1 - 5 T + p T^{2} \)
71 \( 1 - 14 T + p T^{2} \)
73 \( 1 - 11 T + p T^{2} \)
79 \( 1 + 14 T + p T^{2} \)
83 \( 1 + T + p T^{2} \)
89 \( 1 - T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.54492850893401, −14.71427733110048, −14.18906873371606, −13.98075622498237, −13.26244519318844, −12.87559976801598, −12.12901029561195, −11.56929510033443, −11.13490028393596, −10.52014862831611, −9.691904634286691, −9.260544809212469, −8.949892030394151, −8.066326605444281, −7.887266216361327, −6.773769807956859, −6.505270979010594, −5.729462471472845, −5.315123091327256, −4.136170096883348, −3.709071224821560, −3.063727460095448, −2.590410133885088, −1.315441004501026, −0.8229598394164941, 0.8229598394164941, 1.315441004501026, 2.590410133885088, 3.063727460095448, 3.709071224821560, 4.136170096883348, 5.315123091327256, 5.729462471472845, 6.505270979010594, 6.773769807956859, 7.887266216361327, 8.066326605444281, 8.949892030394151, 9.260544809212469, 9.691904634286691, 10.52014862831611, 11.13490028393596, 11.56929510033443, 12.12901029561195, 12.87559976801598, 13.26244519318844, 13.98075622498237, 14.18906873371606, 14.71427733110048, 15.54492850893401

Graph of the $Z$-function along the critical line