Properties

Label 2-22848-1.1-c1-0-6
Degree $2$
Conductor $22848$
Sign $1$
Analytic cond. $182.442$
Root an. cond. $13.5071$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 7-s + 9-s − 5·11-s + 5·13-s − 15-s + 17-s + 2·19-s + 21-s − 2·23-s − 4·25-s − 27-s − 2·29-s + 8·31-s + 5·33-s − 35-s − 7·37-s − 5·39-s − 12·41-s − 5·43-s + 45-s − 12·47-s + 49-s − 51-s + 53-s − 5·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 0.377·7-s + 1/3·9-s − 1.50·11-s + 1.38·13-s − 0.258·15-s + 0.242·17-s + 0.458·19-s + 0.218·21-s − 0.417·23-s − 4/5·25-s − 0.192·27-s − 0.371·29-s + 1.43·31-s + 0.870·33-s − 0.169·35-s − 1.15·37-s − 0.800·39-s − 1.87·41-s − 0.762·43-s + 0.149·45-s − 1.75·47-s + 1/7·49-s − 0.140·51-s + 0.137·53-s − 0.674·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 22848 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 22848 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(22848\)    =    \(2^{6} \cdot 3 \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(182.442\)
Root analytic conductor: \(13.5071\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 22848,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.255346528\)
\(L(\frac12)\) \(\approx\) \(1.255346528\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
17 \( 1 - T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 - 5 T + p T^{2} \) 1.13.af
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - T + p T^{2} \) 1.67.ab
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 5 T + p T^{2} \) 1.83.f
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 - 15 T + p T^{2} \) 1.97.ap
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.61024504109878, −15.27123609368850, −14.21042384279062, −13.72330128478265, −13.30114081650902, −12.93842091251850, −12.22533380473948, −11.55779871395518, −11.22621603892192, −10.39678917006250, −10.01405920423401, −9.765020461400637, −8.610159600842982, −8.339729164678357, −7.666007191034016, −6.869293286984390, −6.340717010701054, −5.776374241004596, −5.218559134687711, −4.716878272850304, −3.594991815841070, −3.276833931459702, −2.215589683370354, −1.528653497937852, −0.4664849090553893, 0.4664849090553893, 1.528653497937852, 2.215589683370354, 3.276833931459702, 3.594991815841070, 4.716878272850304, 5.218559134687711, 5.776374241004596, 6.340717010701054, 6.869293286984390, 7.666007191034016, 8.339729164678357, 8.610159600842982, 9.765020461400637, 10.01405920423401, 10.39678917006250, 11.22621603892192, 11.55779871395518, 12.22533380473948, 12.93842091251850, 13.30114081650902, 13.72330128478265, 14.21042384279062, 15.27123609368850, 15.61024504109878

Graph of the $Z$-function along the critical line