Properties

Label 2-22050-1.1-c1-0-20
Degree $2$
Conductor $22050$
Sign $1$
Analytic cond. $176.070$
Root an. cond. $13.2691$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s − 2·11-s + 3·13-s + 16-s − 4·17-s + 3·19-s + 2·22-s + 6·23-s − 3·26-s + 6·29-s − 8·31-s − 32-s + 4·34-s − 5·37-s − 3·38-s + 10·41-s − 4·43-s − 2·44-s − 6·46-s + 2·47-s + 3·52-s + 8·53-s − 6·58-s + 2·59-s − 61-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s − 0.603·11-s + 0.832·13-s + 1/4·16-s − 0.970·17-s + 0.688·19-s + 0.426·22-s + 1.25·23-s − 0.588·26-s + 1.11·29-s − 1.43·31-s − 0.176·32-s + 0.685·34-s − 0.821·37-s − 0.486·38-s + 1.56·41-s − 0.609·43-s − 0.301·44-s − 0.884·46-s + 0.291·47-s + 0.416·52-s + 1.09·53-s − 0.787·58-s + 0.260·59-s − 0.128·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 22050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 22050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(22050\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(176.070\)
Root analytic conductor: \(13.2691\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 22050,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.433146260\)
\(L(\frac12)\) \(\approx\) \(1.433146260\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 3 T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 - 3 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 5 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 2 T + p T^{2} \)
53 \( 1 - 8 T + p T^{2} \)
59 \( 1 - 2 T + p T^{2} \)
61 \( 1 + T + p T^{2} \)
67 \( 1 + 3 T + p T^{2} \)
71 \( 1 + 10 T + p T^{2} \)
73 \( 1 + 7 T + p T^{2} \)
79 \( 1 + 5 T + p T^{2} \)
83 \( 1 - 14 T + p T^{2} \)
89 \( 1 - 14 T + p T^{2} \)
97 \( 1 + 7 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.65689309189949, −15.13838196930849, −14.55613456886232, −13.89634087633793, −13.18111887845009, −13.01455418312310, −12.12872201955234, −11.61458122325697, −10.96492748762107, −10.63765250787444, −10.10479402613444, −9.200830363005254, −8.937620440255764, −8.420767199309207, −7.599062406189923, −7.207718779554462, −6.553454742221736, −5.881286660904311, −5.243932129181298, −4.549324623736274, −3.669228169458164, −2.987530038085377, −2.282991448629857, −1.397666743599006, −0.5704805167730888, 0.5704805167730888, 1.397666743599006, 2.282991448629857, 2.987530038085377, 3.669228169458164, 4.549324623736274, 5.243932129181298, 5.881286660904311, 6.553454742221736, 7.207718779554462, 7.599062406189923, 8.420767199309207, 8.937620440255764, 9.200830363005254, 10.10479402613444, 10.63765250787444, 10.96492748762107, 11.61458122325697, 12.12872201955234, 13.01455418312310, 13.18111887845009, 13.89634087633793, 14.55613456886232, 15.13838196930849, 15.65689309189949

Graph of the $Z$-function along the critical line