Properties

Label 2-215600-1.1-c1-0-123
Degree $2$
Conductor $215600$
Sign $-1$
Analytic cond. $1721.57$
Root an. cond. $41.4918$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 9-s + 11-s − 5·13-s − 6·17-s + 4·19-s + 6·23-s + 4·27-s + 6·29-s − 5·31-s − 2·33-s + 4·37-s + 10·39-s + 11·43-s + 12·51-s − 6·53-s − 8·57-s + 3·59-s − 10·61-s + 8·67-s − 12·69-s − 3·71-s + 13·73-s − 8·79-s − 11·81-s + 3·83-s − 12·87-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/3·9-s + 0.301·11-s − 1.38·13-s − 1.45·17-s + 0.917·19-s + 1.25·23-s + 0.769·27-s + 1.11·29-s − 0.898·31-s − 0.348·33-s + 0.657·37-s + 1.60·39-s + 1.67·43-s + 1.68·51-s − 0.824·53-s − 1.05·57-s + 0.390·59-s − 1.28·61-s + 0.977·67-s − 1.44·69-s − 0.356·71-s + 1.52·73-s − 0.900·79-s − 1.22·81-s + 0.329·83-s − 1.28·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 215600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 215600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(215600\)    =    \(2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(1721.57\)
Root analytic conductor: \(41.4918\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 215600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \)
13 \( 1 + 5 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 5 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - 11 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 3 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + 3 T + p T^{2} \)
73 \( 1 - 13 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 3 T + p T^{2} \)
89 \( 1 + 15 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.87850873800150, −12.71464266979723, −12.35397291901971, −11.68869311543453, −11.30486725003602, −11.12351657158781, −10.48846110683669, −10.07033510681853, −9.430184982845570, −9.093744881866649, −8.655424218409668, −7.840276722408008, −7.412166043889453, −6.904766979085243, −6.555524206445697, −5.985043779761543, −5.471838168179554, −4.866200178300695, −4.712492674809107, −4.087945144496135, −3.243410649379807, −2.668954882073290, −2.210103014416144, −1.264484560279482, −0.6887714077042894, 0, 0.6887714077042894, 1.264484560279482, 2.210103014416144, 2.668954882073290, 3.243410649379807, 4.087945144496135, 4.712492674809107, 4.866200178300695, 5.471838168179554, 5.985043779761543, 6.555524206445697, 6.904766979085243, 7.412166043889453, 7.840276722408008, 8.655424218409668, 9.093744881866649, 9.430184982845570, 10.07033510681853, 10.48846110683669, 11.12351657158781, 11.30486725003602, 11.68869311543453, 12.35397291901971, 12.71464266979723, 12.87850873800150

Graph of the $Z$-function along the critical line