| L(s) = 1 | + 7·13-s + 8·19-s − 5·25-s + 11·31-s − 37-s + 13·43-s + 61-s − 11·67-s + 10·73-s + 13·79-s + 19·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯ |
| L(s) = 1 | + 1.94·13-s + 1.83·19-s − 25-s + 1.97·31-s − 0.164·37-s + 1.98·43-s + 0.128·61-s − 1.34·67-s + 1.17·73-s + 1.46·79-s + 1.92·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 21168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.041417228\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.041417228\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.69466643980113, −15.27170364430101, −14.29960615510944, −13.87541060919501, −13.53035167367578, −13.04456432629155, −12.07490493598606, −11.86615458193025, −11.19022839702959, −10.67727583602905, −10.08589465851105, −9.351282134932699, −9.030382425377664, −8.094540820215498, −7.911626493914281, −7.082395822335311, −6.318360922404466, −5.913537243787103, −5.281461070328148, −4.442376363190028, −3.766939207339082, −3.220306593318979, −2.407403007941167, −1.329861266233467, −0.8173126364220043,
0.8173126364220043, 1.329861266233467, 2.407403007941167, 3.220306593318979, 3.766939207339082, 4.442376363190028, 5.281461070328148, 5.913537243787103, 6.318360922404466, 7.082395822335311, 7.911626493914281, 8.094540820215498, 9.030382425377664, 9.351282134932699, 10.08589465851105, 10.67727583602905, 11.19022839702959, 11.86615458193025, 12.07490493598606, 13.04456432629155, 13.53035167367578, 13.87541060919501, 14.29960615510944, 15.27170364430101, 15.69466643980113