Properties

Label 2-460e2-1.1-c1-0-102
Degree $2$
Conductor $211600$
Sign $1$
Analytic cond. $1689.63$
Root an. cond. $41.1051$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·7-s − 2·9-s − 3·11-s − 4·13-s + 3·17-s + 5·19-s − 2·21-s + 5·27-s − 2·31-s + 3·33-s − 2·37-s + 4·39-s − 3·41-s − 4·43-s − 12·47-s − 3·49-s − 3·51-s − 6·53-s − 5·57-s − 2·61-s − 4·63-s − 13·67-s − 12·71-s + 11·73-s − 6·77-s − 10·79-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.755·7-s − 2/3·9-s − 0.904·11-s − 1.10·13-s + 0.727·17-s + 1.14·19-s − 0.436·21-s + 0.962·27-s − 0.359·31-s + 0.522·33-s − 0.328·37-s + 0.640·39-s − 0.468·41-s − 0.609·43-s − 1.75·47-s − 3/7·49-s − 0.420·51-s − 0.824·53-s − 0.662·57-s − 0.256·61-s − 0.503·63-s − 1.58·67-s − 1.42·71-s + 1.28·73-s − 0.683·77-s − 1.12·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 211600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 211600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(211600\)    =    \(2^{4} \cdot 5^{2} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(1689.63\)
Root analytic conductor: \(41.1051\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 211600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 \)
good3 \( 1 + T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 3 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 13 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 - 11 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 + 9 T + p T^{2} \)
89 \( 1 + 15 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.52942700993099, −12.87527705562080, −12.49658666138221, −11.89694791432739, −11.71386200410520, −11.16784420815525, −10.80194751428602, −10.15892727859441, −9.823728547444456, −9.406817243610037, −8.539387956362455, −8.331192549649400, −7.681753343161279, −7.407584311457936, −6.832752080773301, −6.144951571152375, −5.630706619020301, −5.109750871138102, −5.000560086348682, −4.387930737898722, −3.448920776196527, −2.983701574882919, −2.574271985728701, −1.643246633313582, −1.255262075652764, 0, 0, 1.255262075652764, 1.643246633313582, 2.574271985728701, 2.983701574882919, 3.448920776196527, 4.387930737898722, 5.000560086348682, 5.109750871138102, 5.630706619020301, 6.144951571152375, 6.832752080773301, 7.407584311457936, 7.681753343161279, 8.331192549649400, 8.539387956362455, 9.406817243610037, 9.823728547444456, 10.15892727859441, 10.80194751428602, 11.16784420815525, 11.71386200410520, 11.89694791432739, 12.49658666138221, 12.87527705562080, 13.52942700993099

Graph of the $Z$-function along the critical line