Properties

Label 2-202800-1.1-c1-0-196
Degree $2$
Conductor $202800$
Sign $-1$
Analytic cond. $1619.36$
Root an. cond. $40.2413$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·7-s + 9-s + 3·11-s − 3·17-s + 3·21-s + 3·23-s − 27-s + 8·29-s + 4·31-s − 3·33-s + 37-s + 3·41-s − 4·43-s + 10·47-s + 2·49-s + 3·51-s + 9·53-s + 4·59-s + 9·61-s − 3·63-s − 4·67-s − 3·69-s + 7·71-s − 6·73-s − 9·77-s + 5·79-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.13·7-s + 1/3·9-s + 0.904·11-s − 0.727·17-s + 0.654·21-s + 0.625·23-s − 0.192·27-s + 1.48·29-s + 0.718·31-s − 0.522·33-s + 0.164·37-s + 0.468·41-s − 0.609·43-s + 1.45·47-s + 2/7·49-s + 0.420·51-s + 1.23·53-s + 0.520·59-s + 1.15·61-s − 0.377·63-s − 0.488·67-s − 0.361·69-s + 0.830·71-s − 0.702·73-s − 1.02·77-s + 0.562·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 202800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 202800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(202800\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1619.36\)
Root analytic conductor: \(40.2413\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 202800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 \)
good7 \( 1 + 3 T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 10 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 9 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 7 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 5 T + p T^{2} \)
83 \( 1 + 10 T + p T^{2} \)
89 \( 1 + 11 T + p T^{2} \)
97 \( 1 + T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.18871751092041, −12.84404336730203, −12.26702454726409, −11.90535268041488, −11.52559867231404, −10.93210948246733, −10.41692523499709, −10.08482885513353, −9.449068123827151, −9.226368780406391, −8.470312952503293, −8.284243651594572, −7.215885855443428, −6.987121988283970, −6.571093628154275, −6.112115448401618, −5.636520684865179, −4.989338804186886, −4.367207584651544, −4.010805310805748, −3.370757566254026, −2.712312940509176, −2.279192050222243, −1.229385019267838, −0.8331676285691187, 0, 0.8331676285691187, 1.229385019267838, 2.279192050222243, 2.712312940509176, 3.370757566254026, 4.010805310805748, 4.367207584651544, 4.989338804186886, 5.636520684865179, 6.112115448401618, 6.571093628154275, 6.987121988283970, 7.215885855443428, 8.284243651594572, 8.470312952503293, 9.226368780406391, 9.449068123827151, 10.08482885513353, 10.41692523499709, 10.93210948246733, 11.52559867231404, 11.90535268041488, 12.26702454726409, 12.84404336730203, 13.18871751092041

Graph of the $Z$-function along the critical line