Properties

Label 2-20160-1.1-c1-0-55
Degree $2$
Conductor $20160$
Sign $1$
Analytic cond. $160.978$
Root an. cond. $12.6877$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s + 6·13-s − 2·17-s + 8·19-s − 8·23-s + 25-s − 2·29-s + 4·31-s + 35-s + 2·37-s + 6·41-s − 4·43-s − 8·47-s + 49-s + 10·53-s + 4·59-s + 2·61-s + 6·65-s − 4·67-s + 12·71-s − 2·73-s + 8·79-s − 4·83-s − 2·85-s + 6·89-s + 6·91-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s + 1.66·13-s − 0.485·17-s + 1.83·19-s − 1.66·23-s + 1/5·25-s − 0.371·29-s + 0.718·31-s + 0.169·35-s + 0.328·37-s + 0.937·41-s − 0.609·43-s − 1.16·47-s + 1/7·49-s + 1.37·53-s + 0.520·59-s + 0.256·61-s + 0.744·65-s − 0.488·67-s + 1.42·71-s − 0.234·73-s + 0.900·79-s − 0.439·83-s − 0.216·85-s + 0.635·89-s + 0.628·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(20160\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(160.978\)
Root analytic conductor: \(12.6877\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 20160,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.105086988\)
\(L(\frac12)\) \(\approx\) \(3.105086988\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
good11 \( 1 + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.80186539217194, −15.13699850060373, −14.46636358127087, −13.88921963394307, −13.53958856390691, −13.17011881187244, −12.24979377854129, −11.77527590609099, −11.23715218750731, −10.77462101184671, −9.972869476106015, −9.622201777088913, −8.926235151357052, −8.227664804106067, −7.936911408730500, −7.048687495916990, −6.435780754273863, −5.780817701238060, −5.404578855409826, −4.487674336443913, −3.836802749502943, −3.205662830185003, −2.277712660698307, −1.518290287215120, −0.7756310195661762, 0.7756310195661762, 1.518290287215120, 2.277712660698307, 3.205662830185003, 3.836802749502943, 4.487674336443913, 5.404578855409826, 5.780817701238060, 6.435780754273863, 7.048687495916990, 7.936911408730500, 8.227664804106067, 8.926235151357052, 9.622201777088913, 9.972869476106015, 10.77462101184671, 11.23715218750731, 11.77527590609099, 12.24979377854129, 13.17011881187244, 13.53958856390691, 13.88921963394307, 14.46636358127087, 15.13699850060373, 15.80186539217194

Graph of the $Z$-function along the critical line