Properties

Label 2-194040-1.1-c1-0-10
Degree $2$
Conductor $194040$
Sign $1$
Analytic cond. $1549.41$
Root an. cond. $39.3626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 11-s + 2·13-s + 2·17-s − 4·19-s + 25-s + 2·29-s + 8·31-s − 10·37-s − 6·41-s − 4·43-s + 2·53-s − 55-s − 12·59-s − 14·61-s + 2·65-s + 12·67-s + 6·73-s − 16·79-s − 4·83-s + 2·85-s − 14·89-s − 4·95-s − 2·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.301·11-s + 0.554·13-s + 0.485·17-s − 0.917·19-s + 1/5·25-s + 0.371·29-s + 1.43·31-s − 1.64·37-s − 0.937·41-s − 0.609·43-s + 0.274·53-s − 0.134·55-s − 1.56·59-s − 1.79·61-s + 0.248·65-s + 1.46·67-s + 0.702·73-s − 1.80·79-s − 0.439·83-s + 0.216·85-s − 1.48·89-s − 0.410·95-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 194040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 194040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(194040\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(1549.41\)
Root analytic conductor: \(39.3626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 194040,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.761382143\)
\(L(\frac12)\) \(\approx\) \(1.761382143\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
11 \( 1 + T \)
good13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 14 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 16 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.22501298866962, −12.50706412414236, −12.22851802138490, −11.80655496821402, −11.08433240777968, −10.67146284730727, −10.36374885276771, −9.760681087699755, −9.441958431488501, −8.662351714354669, −8.323887040084125, −8.089836635504919, −7.148198271420597, −6.867754305739505, −6.275953577176848, −5.851658734395826, −5.292446206390828, −4.741852535619246, −4.274806160959615, −3.558919893627268, −3.025759691501899, −2.530379921649655, −1.673673076323817, −1.372037765476343, −0.3674231247776041, 0.3674231247776041, 1.372037765476343, 1.673673076323817, 2.530379921649655, 3.025759691501899, 3.558919893627268, 4.274806160959615, 4.741852535619246, 5.292446206390828, 5.851658734395826, 6.275953577176848, 6.867754305739505, 7.148198271420597, 8.089836635504919, 8.323887040084125, 8.662351714354669, 9.441958431488501, 9.760681087699755, 10.36374885276771, 10.67146284730727, 11.08433240777968, 11.80655496821402, 12.22851802138490, 12.50706412414236, 13.22501298866962

Graph of the $Z$-function along the critical line