Properties

Label 2-19404-1.1-c1-0-14
Degree $2$
Conductor $19404$
Sign $1$
Analytic cond. $154.941$
Root an. cond. $12.4475$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s − 11-s + 13-s + 4·17-s + 3·19-s + 6·23-s + 4·25-s − 5·29-s + 4·31-s + 37-s + 6·41-s + 4·43-s + 7·47-s − 2·53-s − 3·55-s − 59-s + 2·61-s + 3·65-s + 7·67-s − 10·71-s − 73-s − 16·79-s + 8·83-s + 12·85-s + 14·89-s + 9·95-s − 16·97-s + ⋯
L(s)  = 1  + 1.34·5-s − 0.301·11-s + 0.277·13-s + 0.970·17-s + 0.688·19-s + 1.25·23-s + 4/5·25-s − 0.928·29-s + 0.718·31-s + 0.164·37-s + 0.937·41-s + 0.609·43-s + 1.02·47-s − 0.274·53-s − 0.404·55-s − 0.130·59-s + 0.256·61-s + 0.372·65-s + 0.855·67-s − 1.18·71-s − 0.117·73-s − 1.80·79-s + 0.878·83-s + 1.30·85-s + 1.48·89-s + 0.923·95-s − 1.62·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19404 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19404 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19404\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(154.941\)
Root analytic conductor: \(12.4475\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 19404,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.569388338\)
\(L(\frac12)\) \(\approx\) \(3.569388338\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 - 3 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 - 3 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + 5 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 7 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 7 T + p T^{2} \)
71 \( 1 + 10 T + p T^{2} \)
73 \( 1 + T + p T^{2} \)
79 \( 1 + 16 T + p T^{2} \)
83 \( 1 - 8 T + p T^{2} \)
89 \( 1 - 14 T + p T^{2} \)
97 \( 1 + 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.81840864714064, −15.00361178041767, −14.59624988703241, −13.95687215750688, −13.58561890734629, −13.02633285262562, −12.55618612808328, −11.89169776723789, −11.13415203248018, −10.72210346634824, −9.971750743080703, −9.658031531699330, −9.061817035385561, −8.507070533075336, −7.573604733227497, −7.270073622092576, −6.338209499700840, −5.818140167631127, −5.389660006475541, −4.732450803007766, −3.805964625454412, −2.982924012676732, −2.437547152431815, −1.502335861949035, −0.8442808136708142, 0.8442808136708142, 1.502335861949035, 2.437547152431815, 2.982924012676732, 3.805964625454412, 4.732450803007766, 5.389660006475541, 5.818140167631127, 6.338209499700840, 7.270073622092576, 7.573604733227497, 8.507070533075336, 9.061817035385561, 9.658031531699330, 9.971750743080703, 10.72210346634824, 11.13415203248018, 11.89169776723789, 12.55618612808328, 13.02633285262562, 13.58561890734629, 13.95687215750688, 14.59624988703241, 15.00361178041767, 15.81840864714064

Graph of the $Z$-function along the critical line