L(s) = 1 | + 2-s + 3-s + 4-s + 5-s + 6-s − 2·7-s + 8-s + 9-s + 10-s − 3·11-s + 12-s − 13-s − 2·14-s + 15-s + 16-s + 3·17-s + 18-s − 5·19-s + 20-s − 2·21-s − 3·22-s + 4·23-s + 24-s − 4·25-s − 26-s + 27-s − 2·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.755·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.904·11-s + 0.288·12-s − 0.277·13-s − 0.534·14-s + 0.258·15-s + 1/4·16-s + 0.727·17-s + 0.235·18-s − 1.14·19-s + 0.223·20-s − 0.436·21-s − 0.639·22-s + 0.834·23-s + 0.204·24-s − 4/5·25-s − 0.196·26-s + 0.192·27-s − 0.377·28-s + ⋯ |
Λ(s)=(=(186s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(186s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.952897668 |
L(21) |
≈ |
1.952897668 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) | Isogeny Class over Fp |
---|
bad | 2 | 1−T | |
| 3 | 1−T | |
| 31 | 1−T | |
good | 5 | 1−T+pT2 | 1.5.ab |
| 7 | 1+2T+pT2 | 1.7.c |
| 11 | 1+3T+pT2 | 1.11.d |
| 13 | 1+T+pT2 | 1.13.b |
| 17 | 1−3T+pT2 | 1.17.ad |
| 19 | 1+5T+pT2 | 1.19.f |
| 23 | 1−4T+pT2 | 1.23.ae |
| 29 | 1+pT2 | 1.29.a |
| 37 | 1+2T+pT2 | 1.37.c |
| 41 | 1−2T+pT2 | 1.41.ac |
| 43 | 1+6T+pT2 | 1.43.g |
| 47 | 1+7T+pT2 | 1.47.h |
| 53 | 1−14T+pT2 | 1.53.ao |
| 59 | 1−10T+pT2 | 1.59.ak |
| 61 | 1−7T+pT2 | 1.61.ah |
| 67 | 1+7T+pT2 | 1.67.h |
| 71 | 1+3T+pT2 | 1.71.d |
| 73 | 1+6T+pT2 | 1.73.g |
| 79 | 1−15T+pT2 | 1.79.ap |
| 83 | 1+T+pT2 | 1.83.b |
| 89 | 1−10T+pT2 | 1.89.ak |
| 97 | 1−13T+pT2 | 1.97.an |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.05040591723050562208382603170, −11.86609793920404254157071370869, −10.48645678616775104865148338230, −9.801450505814553909137448242559, −8.512584183321875206998435933939, −7.33319367325295365011876797445, −6.21449897841157477524696518952, −5.03620516471027669405867234682, −3.54463186962642716865631176024, −2.34546937125578111204655036909,
2.34546937125578111204655036909, 3.54463186962642716865631176024, 5.03620516471027669405867234682, 6.21449897841157477524696518952, 7.33319367325295365011876797445, 8.512584183321875206998435933939, 9.801450505814553909137448242559, 10.48645678616775104865148338230, 11.86609793920404254157071370869, 13.05040591723050562208382603170