Properties

Label 2-181944-1.1-c1-0-66
Degree $2$
Conductor $181944$
Sign $1$
Analytic cond. $1452.83$
Root an. cond. $38.1160$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 7-s − 6·13-s + 2·17-s + 4·23-s − 25-s − 10·29-s + 8·31-s − 2·35-s − 6·37-s − 2·41-s − 4·43-s − 8·47-s + 49-s − 10·53-s + 12·59-s − 2·61-s + 12·65-s − 12·67-s − 12·71-s − 14·73-s + 8·79-s − 12·83-s − 4·85-s − 2·89-s − 6·91-s − 10·97-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.377·7-s − 1.66·13-s + 0.485·17-s + 0.834·23-s − 1/5·25-s − 1.85·29-s + 1.43·31-s − 0.338·35-s − 0.986·37-s − 0.312·41-s − 0.609·43-s − 1.16·47-s + 1/7·49-s − 1.37·53-s + 1.56·59-s − 0.256·61-s + 1.48·65-s − 1.46·67-s − 1.42·71-s − 1.63·73-s + 0.900·79-s − 1.31·83-s − 0.433·85-s − 0.211·89-s − 0.628·91-s − 1.01·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 181944 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 181944 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(181944\)    =    \(2^{3} \cdot 3^{2} \cdot 7 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(1452.83\)
Root analytic conductor: \(38.1160\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 181944,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
19 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 10 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + 14 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.58499390676019, −13.06484837075585, −12.66287110484900, −12.05586234745037, −11.78288498269713, −11.40161507087757, −10.92353317889866, −10.13885014585367, −9.973494167935938, −9.417044851517845, −8.725758122482234, −8.406239248031063, −7.691069818239150, −7.447479897689884, −7.105300342567136, −6.404817255250734, −5.760996064556869, −5.129982408049872, −4.801928464445184, −4.297694018089420, −3.616904556738721, −3.114565713492767, −2.562760969205510, −1.787683820763593, −1.233265125577972, 0, 0, 1.233265125577972, 1.787683820763593, 2.562760969205510, 3.114565713492767, 3.616904556738721, 4.297694018089420, 4.801928464445184, 5.129982408049872, 5.760996064556869, 6.404817255250734, 7.105300342567136, 7.447479897689884, 7.691069818239150, 8.406239248031063, 8.725758122482234, 9.417044851517845, 9.973494167935938, 10.13885014585367, 10.92353317889866, 11.40161507087757, 11.78288498269713, 12.05586234745037, 12.66287110484900, 13.06484837075585, 13.58499390676019

Graph of the $Z$-function along the critical line