Properties

Label 2-15912-1.1-c1-0-4
Degree $2$
Conductor $15912$
Sign $1$
Analytic cond. $127.057$
Root an. cond. $11.2719$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s + 2·7-s + 2·11-s − 13-s − 17-s + 11·25-s + 6·29-s + 2·31-s + 8·35-s + 4·37-s − 8·41-s + 4·43-s + 4·47-s − 3·49-s − 2·53-s + 8·55-s − 4·59-s + 6·61-s − 4·65-s − 8·67-s + 6·71-s + 4·73-s + 4·77-s + 12·79-s − 4·85-s − 2·89-s − 2·91-s + ⋯
L(s)  = 1  + 1.78·5-s + 0.755·7-s + 0.603·11-s − 0.277·13-s − 0.242·17-s + 11/5·25-s + 1.11·29-s + 0.359·31-s + 1.35·35-s + 0.657·37-s − 1.24·41-s + 0.609·43-s + 0.583·47-s − 3/7·49-s − 0.274·53-s + 1.07·55-s − 0.520·59-s + 0.768·61-s − 0.496·65-s − 0.977·67-s + 0.712·71-s + 0.468·73-s + 0.455·77-s + 1.35·79-s − 0.433·85-s − 0.211·89-s − 0.209·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(15912\)    =    \(2^{3} \cdot 3^{2} \cdot 13 \cdot 17\)
Sign: $1$
Analytic conductor: \(127.057\)
Root analytic conductor: \(11.2719\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 15912,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.120350394\)
\(L(\frac12)\) \(\approx\) \(4.120350394\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
17 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 - 12 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.03728561903429, −15.29583676731756, −14.70391372941421, −14.20961902959630, −13.85198886460771, −13.34181344426789, −12.70199590982396, −12.09353700060961, −11.48037547950694, −10.77677745087536, −10.28321776132704, −9.728318050942609, −9.200042326416303, −8.656213814568994, −8.000636147893708, −7.174459875719406, −6.380427008777749, −6.202644862232076, −5.205106129123606, −4.923177176383010, −4.076892369769830, −3.001065602676283, −2.304538115017910, −1.666010946315329, −0.9316440660451555, 0.9316440660451555, 1.666010946315329, 2.304538115017910, 3.001065602676283, 4.076892369769830, 4.923177176383010, 5.205106129123606, 6.202644862232076, 6.380427008777749, 7.174459875719406, 8.000636147893708, 8.656213814568994, 9.200042326416303, 9.728318050942609, 10.28321776132704, 10.77677745087536, 11.48037547950694, 12.09353700060961, 12.70199590982396, 13.34181344426789, 13.85198886460771, 14.20961902959630, 14.70391372941421, 15.29583676731756, 16.03728561903429

Graph of the $Z$-function along the critical line