Properties

Label 2-141120-1.1-c1-0-243
Degree $2$
Conductor $141120$
Sign $-1$
Analytic cond. $1126.84$
Root an. cond. $33.5685$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 2·13-s − 2·17-s + 4·19-s − 8·23-s + 25-s − 2·29-s − 4·31-s + 6·37-s − 6·41-s + 4·43-s + 6·53-s + 6·61-s − 2·65-s − 4·67-s − 8·71-s − 10·73-s + 12·79-s − 4·83-s + 2·85-s − 6·89-s − 4·95-s + 6·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.554·13-s − 0.485·17-s + 0.917·19-s − 1.66·23-s + 1/5·25-s − 0.371·29-s − 0.718·31-s + 0.986·37-s − 0.937·41-s + 0.609·43-s + 0.824·53-s + 0.768·61-s − 0.248·65-s − 0.488·67-s − 0.949·71-s − 1.17·73-s + 1.35·79-s − 0.439·83-s + 0.216·85-s − 0.635·89-s − 0.410·95-s + 0.609·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 141120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 141120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(141120\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(1126.84\)
Root analytic conductor: \(33.5685\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 141120,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
good11 \( 1 + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 - 12 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.57187586221119, −13.20734573943660, −12.73405142472263, −12.07471593792240, −11.67542524978875, −11.44818143171190, −10.66277996654385, −10.43119757640801, −9.702524784543023, −9.356032119966243, −8.728452236504746, −8.301558610492490, −7.736003624141844, −7.386002721570022, −6.750469523688736, −6.226617672915681, −5.621697924296826, −5.303197408643538, −4.317092193078688, −4.169834214303611, −3.472674137016270, −2.935948765352968, −2.164819505661564, −1.598146226809860, −0.7805400272549499, 0, 0.7805400272549499, 1.598146226809860, 2.164819505661564, 2.935948765352968, 3.472674137016270, 4.169834214303611, 4.317092193078688, 5.303197408643538, 5.621697924296826, 6.226617672915681, 6.750469523688736, 7.386002721570022, 7.736003624141844, 8.301558610492490, 8.728452236504746, 9.356032119966243, 9.702524784543023, 10.43119757640801, 10.66277996654385, 11.44818143171190, 11.67542524978875, 12.07471593792240, 12.73405142472263, 13.20734573943660, 13.57187586221119

Graph of the $Z$-function along the critical line