Properties

Label 2-11466-1.1-c1-0-22
Degree $2$
Conductor $11466$
Sign $1$
Analytic cond. $91.5564$
Root an. cond. $9.56851$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 4·5-s − 8-s − 4·10-s + 11-s − 13-s + 16-s − 3·17-s − 19-s + 4·20-s − 22-s − 6·23-s + 11·25-s + 26-s + 9·29-s − 8·31-s − 32-s + 3·34-s − 8·37-s + 38-s − 4·40-s + 10·43-s + 44-s + 6·46-s + 11·47-s − 11·50-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.78·5-s − 0.353·8-s − 1.26·10-s + 0.301·11-s − 0.277·13-s + 1/4·16-s − 0.727·17-s − 0.229·19-s + 0.894·20-s − 0.213·22-s − 1.25·23-s + 11/5·25-s + 0.196·26-s + 1.67·29-s − 1.43·31-s − 0.176·32-s + 0.514·34-s − 1.31·37-s + 0.162·38-s − 0.632·40-s + 1.52·43-s + 0.150·44-s + 0.884·46-s + 1.60·47-s − 1.55·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11466\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(91.5564\)
Root analytic conductor: \(9.56851\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11466,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.113324451\)
\(L(\frac12)\) \(\approx\) \(2.113324451\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
11 \( 1 - T + p T^{2} \) 1.11.ab
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 11 T + p T^{2} \) 1.47.al
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 + 15 T + p T^{2} \) 1.61.p
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.78313808824781, −15.82386048234073, −15.58278682494852, −14.52733631591386, −14.15900546359485, −13.75067895581244, −13.02956155498210, −12.36404924389414, −11.95412998447037, −10.84910590055673, −10.57149922876382, −10.04855843306735, −9.278736121091707, −9.074061540422746, −8.383959202078975, −7.488527418182214, −6.822315521823672, −6.217437256198945, −5.772217959788336, −5.008802340313426, −4.146682042175874, −3.052006356168045, −2.160199982548933, −1.865631483144967, −0.7369011465816611, 0.7369011465816611, 1.865631483144967, 2.160199982548933, 3.052006356168045, 4.146682042175874, 5.008802340313426, 5.772217959788336, 6.217437256198945, 6.822315521823672, 7.488527418182214, 8.383959202078975, 9.074061540422746, 9.278736121091707, 10.04855843306735, 10.57149922876382, 10.84910590055673, 11.95412998447037, 12.36404924389414, 13.02956155498210, 13.75067895581244, 14.15900546359485, 14.52733631591386, 15.58278682494852, 15.82386048234073, 16.78313808824781

Graph of the $Z$-function along the critical line