Properties

Label 2-114240-1.1-c1-0-5
Degree $2$
Conductor $114240$
Sign $1$
Analytic cond. $912.210$
Root an. cond. $30.2028$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 7-s + 9-s − 6·11-s − 15-s + 17-s − 6·19-s − 21-s − 4·23-s + 25-s + 27-s + 4·29-s + 8·31-s − 6·33-s + 35-s − 4·37-s − 2·41-s + 12·43-s − 45-s + 8·47-s + 49-s + 51-s + 6·53-s + 6·55-s − 6·57-s − 14·59-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s − 1.80·11-s − 0.258·15-s + 0.242·17-s − 1.37·19-s − 0.218·21-s − 0.834·23-s + 1/5·25-s + 0.192·27-s + 0.742·29-s + 1.43·31-s − 1.04·33-s + 0.169·35-s − 0.657·37-s − 0.312·41-s + 1.82·43-s − 0.149·45-s + 1.16·47-s + 1/7·49-s + 0.140·51-s + 0.824·53-s + 0.809·55-s − 0.794·57-s − 1.82·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 114240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 114240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(114240\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(912.210\)
Root analytic conductor: \(30.2028\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 114240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8885242440\)
\(L(\frac12)\) \(\approx\) \(0.8885242440\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 + T \)
17 \( 1 - T \)
good11 \( 1 + 6 T + p T^{2} \)
13 \( 1 + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 4 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - 12 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 14 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.67787968278734, −13.21971647221156, −12.58633844314566, −12.23585996571269, −11.94672361542881, −10.90514005490328, −10.62689269643271, −10.33685383485620, −9.757429535669296, −9.126932056465584, −8.574974450771609, −8.106608728645077, −7.851597545607671, −7.208380185562023, −6.722247749115988, −5.958354823615631, −5.649556283995703, −4.792492913372097, −4.336007591492851, −3.910748934752535, −2.933353106168344, −2.751451461681811, −2.169684493831807, −1.243851823220915, −0.2805714255996138, 0.2805714255996138, 1.243851823220915, 2.169684493831807, 2.751451461681811, 2.933353106168344, 3.910748934752535, 4.336007591492851, 4.792492913372097, 5.649556283995703, 5.958354823615631, 6.722247749115988, 7.208380185562023, 7.851597545607671, 8.106608728645077, 8.574974450771609, 9.126932056465584, 9.757429535669296, 10.33685383485620, 10.62689269643271, 10.90514005490328, 11.94672361542881, 12.23585996571269, 12.58633844314566, 13.21971647221156, 13.67787968278734

Graph of the $Z$-function along the critical line