Properties

Label 2-10800-1.1-c1-0-54
Degree $2$
Conductor $10800$
Sign $-1$
Analytic cond. $86.2384$
Root an. cond. $9.28646$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·7-s + 2·13-s + 19-s − 11·31-s + 11·37-s + 13·43-s + 18·49-s − 13·61-s + 16·67-s − 7·73-s − 17·79-s − 10·91-s + 5·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 1.88·7-s + 0.554·13-s + 0.229·19-s − 1.97·31-s + 1.80·37-s + 1.98·43-s + 18/7·49-s − 1.66·61-s + 1.95·67-s − 0.819·73-s − 1.91·79-s − 1.04·91-s + 0.507·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10800\)    =    \(2^{4} \cdot 3^{3} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(86.2384\)
Root analytic conductor: \(9.28646\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 10800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 5 T + p T^{2} \) 1.7.f
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 11 T + p T^{2} \) 1.31.l
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 13 T + p T^{2} \) 1.43.an
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 + 17 T + p T^{2} \) 1.79.r
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.69294284815195, −16.20331783857815, −15.79327225668184, −15.28004063107701, −14.44684551632988, −13.96839503262676, −13.17088769232611, −12.80615705021284, −12.51280577063326, −11.53940244872834, −11.02821292883188, −10.31039188890981, −9.767101353613159, −9.122869852592304, −8.870864068014507, −7.676113999785867, −7.316526357301291, −6.440161177218909, −6.026353390290050, −5.447257820643474, −4.292701666896565, −3.711053992663052, −3.044035501108180, −2.321072132321339, −1.039909908546452, 0, 1.039909908546452, 2.321072132321339, 3.044035501108180, 3.711053992663052, 4.292701666896565, 5.447257820643474, 6.026353390290050, 6.440161177218909, 7.316526357301291, 7.676113999785867, 8.870864068014507, 9.122869852592304, 9.767101353613159, 10.31039188890981, 11.02821292883188, 11.53940244872834, 12.51280577063326, 12.80615705021284, 13.17088769232611, 13.96839503262676, 14.44684551632988, 15.28004063107701, 15.79327225668184, 16.20331783857815, 16.69294284815195

Graph of the $Z$-function along the critical line