Properties

Label 2-107800-1.1-c1-0-57
Degree $2$
Conductor $107800$
Sign $-1$
Analytic cond. $860.787$
Root an. cond. $29.3391$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 9-s + 11-s + 2·13-s + 2·17-s − 8·19-s − 4·27-s − 6·29-s − 2·31-s + 2·33-s + 10·37-s + 4·39-s − 10·41-s + 8·43-s + 6·47-s + 4·51-s + 6·53-s − 16·57-s + 6·59-s + 2·61-s + 12·67-s − 8·71-s − 2·73-s − 12·79-s − 11·81-s − 8·83-s − 12·87-s + ⋯
L(s)  = 1  + 1.15·3-s + 1/3·9-s + 0.301·11-s + 0.554·13-s + 0.485·17-s − 1.83·19-s − 0.769·27-s − 1.11·29-s − 0.359·31-s + 0.348·33-s + 1.64·37-s + 0.640·39-s − 1.56·41-s + 1.21·43-s + 0.875·47-s + 0.560·51-s + 0.824·53-s − 2.11·57-s + 0.781·59-s + 0.256·61-s + 1.46·67-s − 0.949·71-s − 0.234·73-s − 1.35·79-s − 1.22·81-s − 0.878·83-s − 1.28·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 107800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 107800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(107800\)    =    \(2^{3} \cdot 5^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(860.787\)
Root analytic conductor: \(29.3391\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 107800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + 12 T + p T^{2} \)
83 \( 1 + 8 T + p T^{2} \)
89 \( 1 - 8 T + p T^{2} \)
97 \( 1 - 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.17484771196450, −13.25093749719328, −13.09419264073828, −12.76719426806057, −11.88445119951795, −11.55105100881498, −10.92762065386521, −10.49015524531309, −9.895405739197119, −9.390266434250487, −8.832806388148104, −8.589422612783461, −8.076152171433475, −7.513791845223085, −7.055817130629392, −6.331939061581131, −5.882355032613533, −5.352123220127354, −4.458170077047114, −3.916109480151259, −3.679682045635122, −2.835384645513297, −2.329521467213436, −1.817187064916911, −0.9970553419345082, 0, 0.9970553419345082, 1.817187064916911, 2.329521467213436, 2.835384645513297, 3.679682045635122, 3.916109480151259, 4.458170077047114, 5.352123220127354, 5.882355032613533, 6.331939061581131, 7.055817130629392, 7.513791845223085, 8.076152171433475, 8.589422612783461, 8.832806388148104, 9.390266434250487, 9.895405739197119, 10.49015524531309, 10.92762065386521, 11.55105100881498, 11.88445119951795, 12.76719426806057, 13.09419264073828, 13.25093749719328, 14.17484771196450

Graph of the $Z$-function along the critical line