Properties

Label 2-106560-1.1-c1-0-78
Degree $2$
Conductor $106560$
Sign $1$
Analytic cond. $850.885$
Root an. cond. $29.1699$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·11-s + 2·13-s − 2·17-s + 8·19-s − 4·23-s + 25-s + 10·29-s + 2·31-s − 37-s + 8·41-s + 6·43-s + 6·47-s − 7·49-s − 2·55-s + 4·59-s + 4·61-s + 2·65-s + 16·67-s + 4·71-s + 6·73-s + 10·79-s − 16·83-s − 2·85-s + 2·89-s + 8·95-s − 8·97-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.603·11-s + 0.554·13-s − 0.485·17-s + 1.83·19-s − 0.834·23-s + 1/5·25-s + 1.85·29-s + 0.359·31-s − 0.164·37-s + 1.24·41-s + 0.914·43-s + 0.875·47-s − 49-s − 0.269·55-s + 0.520·59-s + 0.512·61-s + 0.248·65-s + 1.95·67-s + 0.474·71-s + 0.702·73-s + 1.12·79-s − 1.75·83-s − 0.216·85-s + 0.211·89-s + 0.820·95-s − 0.812·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 106560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 106560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(106560\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 37\)
Sign: $1$
Analytic conductor: \(850.885\)
Root analytic conductor: \(29.1699\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 106560,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.588313996\)
\(L(\frac12)\) \(\approx\) \(3.588313996\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
37 \( 1 + T \)
good7 \( 1 + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 10 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 8 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 4 T + p T^{2} \)
67 \( 1 - 16 T + p T^{2} \)
71 \( 1 - 4 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.88226874406679, −13.14910159027147, −12.83986166441408, −12.15635527020311, −11.84534484272963, −11.14264963170395, −10.82462928181575, −10.20294710272378, −9.684027999462960, −9.461194572966239, −8.643908403059289, −8.252471155246410, −7.770214106351741, −7.137287568015271, −6.649234652302410, −6.012539909872611, −5.620227789445946, −5.017143148710492, −4.506487391642627, −3.807815411676311, −3.183017880356816, −2.566576890120958, −2.083213420932357, −1.083284871214660, −0.6873795017548569, 0.6873795017548569, 1.083284871214660, 2.083213420932357, 2.566576890120958, 3.183017880356816, 3.807815411676311, 4.506487391642627, 5.017143148710492, 5.620227789445946, 6.012539909872611, 6.649234652302410, 7.137287568015271, 7.770214106351741, 8.252471155246410, 8.643908403059289, 9.461194572966239, 9.684027999462960, 10.20294710272378, 10.82462928181575, 11.14264963170395, 11.84534484272963, 12.15635527020311, 12.83986166441408, 13.14910159027147, 13.88226874406679

Graph of the $Z$-function along the critical line