Properties

Label 4-1300500-1.1-c1e2-0-6
Degree $4$
Conductor $1300500$
Sign $1$
Analytic cond. $82.9210$
Root an. cond. $3.01763$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 4-s + 5-s + 8·7-s + 3·9-s − 2·12-s − 2·15-s + 16-s − 6·17-s − 8·19-s + 20-s − 16·21-s + 25-s − 4·27-s + 8·28-s + 8·35-s + 3·36-s − 4·37-s + 3·45-s − 2·48-s + 34·49-s + 12·51-s + 16·57-s − 2·60-s + 24·63-s + 64-s − 6·68-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/2·4-s + 0.447·5-s + 3.02·7-s + 9-s − 0.577·12-s − 0.516·15-s + 1/4·16-s − 1.45·17-s − 1.83·19-s + 0.223·20-s − 3.49·21-s + 1/5·25-s − 0.769·27-s + 1.51·28-s + 1.35·35-s + 1/2·36-s − 0.657·37-s + 0.447·45-s − 0.288·48-s + 34/7·49-s + 1.68·51-s + 2.11·57-s − 0.258·60-s + 3.02·63-s + 1/8·64-s − 0.727·68-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1300500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1300500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1300500\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{3} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(82.9210\)
Root analytic conductor: \(3.01763\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1300500,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.437334552\)
\(L(\frac12)\) \(\approx\) \(2.437334552\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3$C_1$ \( ( 1 + T )^{2} \)
5$C_1$ \( 1 - T \)
17$C_2$ \( 1 + 6 T + p T^{2} \)
good7$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 18 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79711986387068141575976779625, −7.56689807773085737112376729195, −7.19170400608151927655187626887, −6.38949936725272530282824625186, −6.37150043364000269525301859690, −5.82487279118675041342104526304, −5.07079211702149946545201877286, −5.01944387438421311944798675589, −4.46472359494342999265261204391, −4.30912662284802770612117339996, −3.45323495695880355625020856878, −2.19891095670466256908754466292, −2.07452981833800877942993394416, −1.67422833535095353270525529506, −0.74314124481069084021545695805, 0.74314124481069084021545695805, 1.67422833535095353270525529506, 2.07452981833800877942993394416, 2.19891095670466256908754466292, 3.45323495695880355625020856878, 4.30912662284802770612117339996, 4.46472359494342999265261204391, 5.01944387438421311944798675589, 5.07079211702149946545201877286, 5.82487279118675041342104526304, 6.37150043364000269525301859690, 6.38949936725272530282824625186, 7.19170400608151927655187626887, 7.56689807773085737112376729195, 7.79711986387068141575976779625

Graph of the $Z$-function along the critical line