L(s) = 1 | − 2-s + 4-s − 6·5-s − 8-s − 3·9-s + 6·10-s + 16-s + 3·17-s + 3·18-s − 6·19-s − 6·20-s + 18·25-s + 3·31-s − 32-s − 3·34-s − 3·36-s + 6·38-s + 6·40-s + 18·45-s + 4·49-s − 18·50-s + 3·59-s + 3·61-s − 3·62-s + 64-s + 6·67-s + 3·68-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 2.68·5-s − 0.353·8-s − 9-s + 1.89·10-s + 1/4·16-s + 0.727·17-s + 0.707·18-s − 1.37·19-s − 1.34·20-s + 18/5·25-s + 0.538·31-s − 0.176·32-s − 0.514·34-s − 1/2·36-s + 0.973·38-s + 0.948·40-s + 2.68·45-s + 4/7·49-s − 2.54·50-s + 0.390·59-s + 0.384·61-s − 0.381·62-s + 1/8·64-s + 0.733·67-s + 0.363·68-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 311904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 311904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.342730333480456406579974123015, −8.139499671608587532131930780785, −7.890226509545634392765080740470, −7.38365419586850268326170785764, −6.72180661032823708492047279344, −6.57252416669905646537628050663, −5.67114705454295229662265039811, −5.20162348293338895653181840361, −4.40662126530608505167961906401, −3.99953713969694421860649453213, −3.53504961735030896761622599530, −2.96010347213561316878632444656, −2.23109421820828999676631183520, −0.824797561920330696264374355881, 0,
0.824797561920330696264374355881, 2.23109421820828999676631183520, 2.96010347213561316878632444656, 3.53504961735030896761622599530, 3.99953713969694421860649453213, 4.40662126530608505167961906401, 5.20162348293338895653181840361, 5.67114705454295229662265039811, 6.57252416669905646537628050663, 6.72180661032823708492047279344, 7.38365419586850268326170785764, 7.890226509545634392765080740470, 8.139499671608587532131930780785, 8.342730333480456406579974123015